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Abstract

We present a symbolic-numeric technique to find the closest multivariate polynomial system to
a given one which has roots with prescribed multiplicity structure. Our method generalizes the
“Weierstrass iteration”, defined by Ruatta, to the case when the input system is not exact, i.e.
when it is near to a system with multiple roots, but itself might not have multiple roots. First,
using interpolation techniques, we define the “generalized Weierstrass map”, a map from the set
of possible roots to the set of systems which have these roots with the given multiplicity structure.
Minimizing the 2-norm of this map formulates the problem as an optimization problem over all
possible roots. We use Gauss-Newton iteration to compute the closest system to the input with
given root multiplicity together with its roots. We give explicitly an iteration function which
computes this minimum. These results extends previous results of Zhi and Wu and results of
Zeng from the univariate case to the multivariate case. Finally, we give a simplified version of the
iteration function analogously to the classical Weierstrass iteration, which allows a component-
wise expression, and thus reduces the computational cost of each iteration. We provide numerical
experiments that demonstrate the effectiveness of our method.
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1. Introduction

The paper considers systems of multivariate equations which are near systems with multiple
roots. The motivation for this work comes from the fact that the main bottleneck of the most
commonly used numerical solvers, for example the Newton iteration or the homotopy continuation
method, is when the solver runs into a system that is close to one with multiple roots. Since the
Jacobian matrix to be inverted in the Newton iteration is close to being singular, these systems are
ill-conditioned. We combine multivariate interpolation techniques and the algebraic multiplicity
structure of the roots to construct an iterative method which is well defined for systems with the
given multiplicity structure, and we prove that it computes the roots of the nearest system with
the given multiplicity structure.

Our main tool is the multivariate interpolation method developed in Mourrain (1997) and in
Mourrain and Ruatta (2002). Using interpolation we were able to generalize to the multivariate case
similar results of Zhi and Wu (1998) and Zeng (2005) in the univariate case which use polynomial
division. By close inspection of the interpolation method, we could express the distance of the
input system from the set of systems with a given root multiplicity structure as an optimization
problem over the roots. This new optimization formulation for the above distance resulted in a
new iterative method which computes the roots of the nearest system with the given multiplicity
structure. This approach was presented in Ruatta et al. (2004) for simple roots; in the present
paper we generalize it to the case of roots with multiplicities.

We start our discussion with the univariate case. We address the following problem in the
univariate case:

Problem 1. Given a polynomial f ∈ C[x], a finite set of exponents E ⊂ N, the number of roots
m ∈ N, and the multiplicity structure l = (l1, . . . , lm) ∈ Nm≥1. Find f̃ ∈ C[x] and z1, . . . , zm ∈ C
such that

∏m
i=1(x− zi)li divides f̃ , and f−f̃ =

∑
α∈E cαx

α with
∑
α∈E |cα|2 minimal.

Our first contribution in the univariate case is an explicit formula for the gradient of the norm
square function, extending the results of Zhi and Wu (1998) to the m > 1 case. The second contri-
bution in the univariate case is a component-wise formula for the Gauss-Newton iteration to find
the optimum, given here explicitly for the first time.

Next we present the extension of our results to the multivariate case. Instead of multiplicities, we
must consider a more complicated notion of root multiplicity structure. A multiple root of the multi-
variate system (f1, . . . , fN ) is a root z, along with “tangential conditions” Λ = {Λ1, . . . ,Λk} where
each Λi is a differential operator that vanishes on the defining polynomials at z, i.e. Λj(fi)(z) = 0
for all i = 1, . . . N and j = 1, . . . k. The multiplicity of the root z is k = |Λ|.

For the method presented in this paper we assume that a description of the multiplicity structure
of all or some of the roots of a nearby system to the input is known in advance, and this description
is given as a set of tangential conditions as described above. We refer to the following papers on
the subject of computation of the multiplicity structure of multivariate polynomial systems: the
theoretical foundations in the exact case go back to the works of Macaulay (1994) and Gröbner
(1970), more recently it was studied for example in Marinari et al. (1995); Stetter (2004); in the
approximate case Dayton and Zeng (2005) and Wu and Zhi (2008) presented a method to compute
the multiplicity structure from an approximation of a multiple root.

We consider the following problem in the multivariate case:
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Problem 2. Given N ≥ 1, f1, . . . fN ∈ C[x1, . . . , xn], E1, . . . , EN ⊂ Nn finite sets of exponents,
m ∈ N the number of roots, and the tangential conditions Λ1, . . . ,Λm, each of them being a finite
set of differential polynomials from C[∂x1 . . . ∂xn ]. Find f̃1, . . . , f̃N ∈ C[x1, . . . , xn] and z1, . . . , zm ∈
Cn such that for all i = 1, . . . , N , r = 1, . . . ,m, Λr,j ∈ Λj we have Λr,j(f̃i)(zr) = 0, moreover
fi − f̃i =

∑
α∈Ei

cαxα with
∑N
i=1

∑
α∈Ei

|cα|2 minimal.

Our first contribution in the multivariate case is to express the distance of the input from systems
with given root multiplicity structure as the least squares norm of the multivariate Weierstrass map,
a map from the set of possible roots to the set of systems which have these roots with the given
multiplicity structure. Secondly, we give explicit formulas for the gradient of the square norm
function. Thirdly, we also give explicit formulas for the Gauss-Newton iteration of the Weierstrass
map, however, in the multivariate case these expressions are not given component-wise.

Lastly, we give a simplified version of the iteration, which might be of independent interest.
Analogously to the classical Weierstrass map, we use the multivariate Hermite interpolation poly-
nomials in each Gauss-Newton iteration step to transform the Jacobian matrix to a block diagonal
matrix. As a consequence, we get a simple component-wise formula for the iteration function. How-
ever, this iteration will not converge to the least squares minimum, but we do give a description
of its fixed points. As our numerical experiments indicate, the simplified method computes roots
with the smallest residual value

∑N
r=1

∑m
i=1

∑li
t=1 |Λi,t(fr)(zi)|

2, compared to the non-simplified
versions.

We also remark that our results have straightforward extension to a formulation of Problem 2
where f1, . . . , fN are analytic functions in n variables and the sets E1, . . . , EN are finite sets of
analytic functions so that the differences fj − f̃j lie in spanC(Ej) for all j = 1, . . . , N (see Ruatta
et al. (2004) for a similar extension).

Also, our results can be easily extended to the problem of finding the closest system that satisfies
a much broader range of constraints. We could find the closest system that share a common root,
but each polynomial has a different multiplicity for the root. We could also find the closest system
which has a point that obtains specified values on each polynomial (ex. f1(x) = 1 and f2(x) = 45)
or has specific derivative values at each point (ex. f ′1(x) = 2, f ′′2 (x) = −1).

Finally, we would like to note that the iteration methods presented in this paper involve the
computation of interpolants, i.e. the computation of the inverse or the pseudo inverse of multi-
variate Vandermonde matrices. However, even in the univariate case, Vandermonde matrices are
ill-conditioned, especially when one cannot choose the location of the interpolation points. For
larger problems, it could very well be that this ill-conditioning leads to numerical instabilities in
the generalized Weierstrass iteration. We note that even though we do not have a choice in the
location of the interpolant points, but we can choose freely the basis for the support of the poly-
nomials we interpolate, which might allow improvement in the accuracy (see for example results
on using orthogonal polynomials in the univariate case in Demmel and Koev (2006)). Also, using
generalizations of the Newton interpolation formula to multivariate Hermite interpolation in Sauer
and Xu (1995) may improve accuracy. We would also like to remark, following the suggestions of
an anonymous referee, that one could interpret these distances as condition numbers and then it
also might suffice in most applications if one could just estimate the magnitude of the distances to
get a reliable impression of the conditioning of the given problem.
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1.1. Related Work

The literature on solving polynomial systems and systems of analytic functions near singular
systems is very rich. Below we give a brief summary of results that are the most related to our
method. Without trying to give a complete survey of other results tackling related problems,
instead we point to papers that contain good surveys and extended bibliography on these topics.

Our method is similar in spirit to a sequence of results computing the nearest systems which
have certain prescribed properties: Hitz and Kaltofen (1998) computes the nearest univariate poly-
nomial with constrained roots, Hitz et al. (1999) computes the nearest polynomial with real root,
Karmarkar and Lakshman (1996, 1998) computes the nearest pair of polynomials with non-trivial
GCD, Zhi and Wu (1998) computes the nearest polynomial with a singular root, Zeng (2005)
computes the nearest polynomial with several singular roots.

In the univariate case, the least squares formulation given here is an extension of the ones in
Zhi and Wu (1998); Zeng (2005) to the more general Problem 1. In Zhi and Wu (1998) the authors
consider the m = 1 case. They formulate the distance of the input to the set of monic degree d
polynomials with a root of multiplicity l as a least squares problem, and they give explicit matrix
formulation for the objective function and its gradient. In Zeng (2005) the author considers the
case when

∑m
i=1 li = deg(f), and the set E is the support of f . He also formulates the problem as

a least squares problem, although the objective function is not given explicitly. The minimum is
computed using Gauss-Newton iteration. He also discusses the question of computing the multi-
plicity structure, which we do not consider in the present paper. Our subject in the univariate case
can also be viewed as a special case of the approximate GCD problem (for a survey see (Grabmeier
et al., 2002, Section 2.12.3)), and in particular the present approach is an extension of the works in
Corless et al. (1995); Karmarkar and Lakshman (1998); Ruatta et al. (2004) where an approximate
GCD is sought without multiple roots, while here we seek for a GCD which has roots with given
multiplicities.

Another approach handling univariate polynomials near ones with multiple roots is the compu-
tation of zero clusters. In Hribernig and Stetter (1997); Stetter (1996) the authors compute the
individual zeroes of the cluster if a nearby system with multiple roots is given: our method can be
used to compute the nearby system with multiplicities. In the papers Yakoubsohn (2000); Giusti
et al. (2005) a complete complexity and convergence analysis is given for computing the center of
a small disc containing the cluster. These papers also contain surveys and extended bibliography
of the topic. Methods that do not require an initial approximation of the clusters include Sasaki
and Noda (1989); Sasaki (2003); Kaltofen and May (2003); Zeng (2005); Janovitz-Freireich et al.
(2006); these methods are adaptations of the exact square-free factorization to the approximate
case.

Considering the multivariate case, we are not aware of any work which considers computing the
nearest multivariate system with given root multiplicity structure. In the works Ojika et al. (1983);
Ojika (1987a,b); Lecerf (2002); Dayton and Zeng (2005); Leykin et al. (2006, 2007); Giusti et al.
(2007) an incremental “deflation” algorithm is proposed to replace the original system which had a
multiple root with another one which has the same root with multiplicity one. Lecerf (2002) shows
that the resulting iterator converges quadratically to the root in an appropriate non-Archimedean
metric. Recently Giusti et al. (2007) gives a complete convergence analysis for the codimension
one case in terms of α-theory of the deflation method, as well as criteria as to where to stop the
iteration near the cluster. This paper also contains a good survey of numerical techniques to handle
roots with clusters of roots. Global techniques – techniques where all roots of a polynomial system
are encountered – include the homotopy continuation method of Morgan et al. (1992); Sommese
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and Wampler (1996); Sommese et al. (2002), or the approximate radical computation in Janovitz-
Freireich et al. (2006, 2007), where an approximation to the center of gravity of every cluster is
computed, without initial approximations.

The method presented here has the property that it can compute several roots simultaneously,
but does not need to compute all the roots. Mourrain and Ruatta (2002) define a generalization
of the Weierstrass iteration which computes several roots simultaneously with given multiplicity
structure. As we mentioned earlier, our iteration is an adaptation of the generalized Weierstrass
iteration in Mourrain and Ruatta (2002) for the case when the input might not have multiple roots
but a nearby system has.

2. Notation

We will use the following notation throughout this paper:
(1) Vectors will be denoted by bold, and considered column vectors. Ex.

v := (v1, . . . , vn)T ∈ Cn.

The 2-norm of a vector is denoted by

‖v‖ = ‖v‖2 =
n∑
i=1

|vi|2.

(2) Monomials will be expressed as a vector to a vector power. Ex. xα :=
∏n
i=1 x

αi
i for α ∈ Nn.

(3) Conjugate of a complex number z will be denoted by z. The adjoint of a matrix A (i.e.
conjugate transpose matrices) will be denoted by A∗.

(4) A support is a set of exponents E := {α1, . . . , αn} where αi ∈ Nn. We denote by C[x1, . . . , xn]E
to be the set of all polynomials in C[x1, . . . , xn] of the form

∑
α∈E cαxα.

(5) For a complex matrix A, we will denote the Moore-Penrose pseudoinverse by A†. If A has
more columns than rows and maximal rank, then A† = A∗(AA∗)−1. If A has more rows than
columns and maximal rank, then A† = (A∗A)−1A∗.

(6) If A is a matrix/vector with symbolic entries, then we will denote by ∂A
∂z the matrix/vector

obtained by applying ∂
∂z to each entry of A.

3. Univariate Hermite Interpolation

We give a description of the Hermite interpolation method following the approach in Mourrain
and Ruatta (2002). While the univariate case is a special case of the multivariate case which we
describe later in the paper, it is presented here for better understanding.

Root multiplicity structures are given in the form l = (l1, . . . , lm) where li is the multiplicity of
the ith root. For example, l = (3, 1) represents 2 roots, the first of which has multiplicity 3 and the
second is a simple root. In Zhi and Wu (1998), they consider the case of the nearest polynomial
with one multiple root. In our notation, a single root of multiplicity l would be represented by (l).

In the next definition we introduce the ingredients of the univariate Hermite interpolation.
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Definition 3. Let z := (z1, . . . , zm) ∈ Cm fixed. For a given multiplicity structure l := (l1, . . . , lm)
and a support E := {α1, . . . , αt} ⊂ N, we define a generalized Vandermonde matrix

VE,l(z) :=



zα1
1 · · · zαt

1

α1z
α1−1
1 · · · αtz

αt−1
1

...
...

α1!
(α1−l1+1)!z

α1−l1+1
1 · · · αt!

(αt−l1+1)!z
αt−l1+1
1

...
...

zα1
m · · · zαt

m

...
...

α1!
(α1−lm+1)!z

α1−lm+1
m · · · αt!

(αt−lm+1)!z
αt−lm+1
m



.

If we denote

d :=
m∑
i=1

li

then VE,l(z) has size d× t. We assume that t ≥ d for the rest of the paper.
We define the set

∆E,l := {z ∈ Cm | rankVE,l(z) < d} .
If it is clear from the context, we will omit z, E and l from V := VE,l(z) and ∆ := ∆E,l.

Note that if z ∈ Cm \ ∆ then the Moore-Penrose pseudoinverse of V is given by V † =
V ∗(V V ∗)−1 (see also in the Notation section).

We define a set of unit column vectors ui,j as follows:

ui,j := [0 · · · 0︸ ︷︷ ︸ · · · 0 · · ·
j

1̂ · · · 0︸ ︷︷ ︸ · · · 0 · · · 0︸ ︷︷ ︸]T
l1 li lm

Each ui,j consists of m blocks. The kth block of ui,j has lk rows. The ith block has a 1 in the jth
position.

Define the vector of monomials xE := (xα1 , . . . , xαt).
We define the Hermite basis polynomials by

hi,j(z, x) := xE V †ui,j . (1)

for all 1 ≤ i ≤ m and 1 ≤ j ≤ li.

The next proposition is a straightforward consequence of the definition of the Hermite basis
polynomials.

Proposition 4. Given z = (z1, . . . , zm) ∈ Cm, l = (l1, . . . , lm), E = (α1, . . . , αt) and V = VE,l(z)
as in Definition 3. Assume that the matrix V has full rank. Then the Hermite basis polynomials
defined in (1) satisfy:

∂khi,j
∂xk

(z, zr) =

{
1, if i = r and j = k − 1;
0, otherwise.

(2)
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for all 1 ≤ i, r ≤ m, 1 ≤ j ≤ li and 1 ≤ k ≤ lr.

Next we define the Hermite interpolation of a polynomial f ∈ C[x] with respect to a fixed
multiplicity structure l and support E.

Definition 5. Let l = (l1, . . . , lm), E = (α1, . . . , αt) and z = (z1, . . . , zm) ∈ Cm \∆E,l be given as
in Definition 3. Let hi,j(z, x) be as in (1). For a given f ∈ C[x] we define the Hermite interpolation
polynomial

F (z, x) :=
m∑
i=1

li∑
j=1

f (j−1)(zi)hi,j(z, x).

The following proposition gives the main properties of the Hermite interpolation polynomials.

Proposition 6. With f , m, l, E, z, and F (z, x) defined as above, the following properties hold:
(1) F (j)(z, zi) = f (j)(zi) for all 1 ≤ i ≤ m and 0 ≤ j ≤ li − 1.
(2) F (z, x) is a polynomial with support E.
(3) ‖F (z, x)‖2 is minimal among all polynomials with properties 1 and 2.
(4) A polynomial having properties 1, 2 and 3 is uniquely determined and is equal to F (z, x).

Proof. 1. Let F ∈ Ct be the coefficient vector of F in the monomial basis {xα1 , . . . , xαt}, i.e.

F = xEF, (3)

where xE = (xα1 , . . . , xαt) as before. Define also the evaluation vector f for f , namely

f := (f(z1), . . . , f (l1−1)(z1), f(z2), . . . , f (lm−1)(zm))T . (4)

It suffices to note that VE,l(z)F = f , so F has the desired property.
2. Since each hi,j has support E, F also has support E.
3. Note that F = V †f , and the claim is a basic property of the Moore-Penrose pseudoinverse

(see for example Meyer (2000)).
4. The uniqueness of least-squares solutions is proved for example in Meyer (2000). 2

4. Univariate Weierstrass Map

In this section, we introduce the univariate Weierstrass map, originally defined in Mourrain and
Ruatta (2002), using the Hermite interpolation polynomials defined in the previous section. We
prove that the minimal 2-norm of the Weierstrass map equals the distance of the input polynomial
from the set of polynomials with the given root multiplicity structure. As we mentioned in the
introduction, the Weierstrass map considered here is a generalization of the map defined in Zeng
(2005) in that we allow for the perturbation of coefficients corresponding to an arbitrary set of
monomials, while in Zeng (2005) only perturbation of all the non-leading coefficients of f is allowed.

Definition 7. Let f , m, l, E, F , and ∆ be as in Definition 5. We define the univariate Weierstrass
map as

W : Cm \∆→C[x]E
z 7→ F (z, x)
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The following proposition gives the main properties of the Weierstrass map.

Proposition 8. Let f , m, l, E, F , and ∆ be as above. The univariate Weierstrass map W defined
in Definition 7 has the following properties:

(1) W(z) = 0 for some z = (z1, . . . , zm) ∈ Cm \∆ if and only if z1, . . . , zm are roots of f with
multiplicities l1, . . . , lm, respectively.

(2) ‖W(z)‖22 = f∗M−1f where ‖W(z)‖2 is the 2-norm of the coefficient vector F of F , M := V V ∗

and f is defined as in (4) by

f := (f(z1), . . . , f (l1−1)(z1), f(z2), . . . , f (lm−1)(zm))T ∈ Cd.

(3) If min
z∈Cm\∆

‖W(z)‖2 exists then it is equal to the distance of f from the set of polynomials f̃

such that f̃ has the multiplicity structure l and is obtained by perturbation of the coefficients
of f corresponding to the support E.

Proof. We prove this in a more general setting in Proposition 26 below. 2

We follow the approach of Zhi and Wu Zhi and Wu (1998) and express the roots of the gradient
of the function

‖W‖2 : Cm−∆ → R.
If zi = ai+ibi for i = 1, . . . ,m, then ‖W‖2 can be considered as a real function ‖W‖2 : (R2)m\∆→
R, and its gradient is a 1× 2m vector. However, since one can formally define

∂‖W‖2

∂zi
=

1
2

(
∂‖W‖2

∂ai
− i∂‖W‖

2

∂bi

)
,

∂‖W‖2

∂z̄i
=

1
2

(
∂‖W‖2

∂ai
+ i

∂‖W‖2

∂bi

)

we can also consider the roots of ∂‖W‖2
∂zi

for i = 1, . . . ,m.
The next theorem and corollaries are needed to give explicit formulas for the gradient of ‖W‖2,

as well as for the Jacobian matrix of the Weierstrass map, which we will use later.

Theorem 9. Let f , V and F be as in Definitions 3 and 5. Let F be the coefficient vector of F ,
and f be the evaluation vector of f as in (3) and (4). If V has maximal rank, then

∂F
∂zi

= V †
(
∂f
∂zi
− ∂V

∂zi
F
)

Proof. This follows immediately from the following lemma and the fact that ∂V ∗

∂zi
= 0 since V is

analytic in zi. 2

Lemma 10. Let f , V , F , F and f be as above. If V is of maximal rank, then

∂F
∂zi

= V †
(
∂f
∂zi
− ∂V

∂zi
F
)

+
(
I − V †V

)(∂V ∗
∂zi

(V V ∗)−1 f
)
. (5)
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Proof. By definition, F is the least squares solution to

V F = f . (6)

We can solve this system using the Moore-Penrose pseudoinverse of V , namely V † = V ∗ (V V ∗)−1.
So equation (6) is actually solved in two steps. First we find g such that

V V ∗g = f (7)

then we compute F as
F = V ∗g. (8)

From equation (8) we have
∂F
∂zi

=
(
∂V ∗

∂zi

)
g + V ∗

(
∂g
∂zi

)
(9)

From equation (7) we have

∂g
∂zi

= (V V ∗)−1

(
∂f
∂zi
−
(
∂V

∂zi

)
V ∗g − V

(
∂V ∗

∂zi

)
g
)

(10)

Combining equations (10) and (9) and simplifying gives (5). 2

Corollary 11. Let f , E, m, l, d, z hi,j and F be as in Definitions 3 and 5. Let π be the projection

π : C[x]E → spanC{hi,j}
m li
i=1j=1

Then

π
∂F

∂zi
=
(
f (li)(zi)− F (li)(z, zi)

)
hi,li(z, x). (11)

Proof. By Theorem 9 we have

V
∂F
∂zi

=
∂f
∂zi
− ∂V

∂zi
F.

Because of property 1 of Proposition (6) we get that

∂f
∂zi
− ∂V

∂zi
F =

(
f (li)(zi)− F (li)(z, zi)

)
ui,li ,

where ui,j as defined in Definition 3. Equivalently,

π
∂F

∂zi
=
(
f (li)(zi)− F (li)(z, zi)

)
hi,li(z, x).

2

The next proposition extends the results of (Zhi and Wu, 1998, Theorem 1) to the case when
m > 1. Before stating the proposition we need some definitions.

Definition 12. Let z = (z1, . . . , zm), l = (l1, . . . , lm), E = {α1, . . . , αt}, f , V , F , F and f be as
above. For i = 1, . . . ,m we define
• V̂i to be the matrix obtained from V by deleting the row ∂li−1

∂z
li−1
i

(zα1
i , . . . , zαt

i ), i.e. V̂i is the

Vandermonde matrix for the multiplicity structure (l1, . . . , li − 1, . . . , lm);
• f̂i to be the vector obtained from f by deleting the entry f (li−1)(zi);
• M̂i := V̂iV̂

∗
i ;
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• F̂i(z, x) to be the polynomial with coefficient vector F̂i := V̂ †i f̂i, i.e. F̂i interpolates f in z with
respect to the multiplicity structure (l1, . . . , li − 1, . . . , lm).

Proposition 13. Using the notation of Definition 12, for each i = 1, . . . ,m the partial derivative
∂‖W‖2
∂zi

is equal to

∂‖W‖2

∂zi
=

det M̂i

det M

“
f (li)(zi)− F (li)(zi)

”“
f (li−1)(zi)− F̂

(li−1)
i (zi)

”
. (12)

Proof. The proof is similar to the one in (Zhi and Wu, 1998, Theorem 1), so we will skip some
of the details. By Proposition 8 we have that ‖W‖2 = f∗M−1f . Let D be the d ×m matrix with
entries defined by

Dj,i =

{
f (li)(zi)− F (li)(z, zi) if j =

∑i
t=1 lt

0 otherwise.
(13)

and let D∗,i be the i-th column of D. Let g = M−1f be defined as in (7) in the proof of Lemma
10. We have

∂‖W‖2

∂zi
=
∂f∗M−1f

∂zi
=
∂f∗g
∂zi

. (14)

Since f is analytic, ∂f∗

∂zi
= 0, and by (10) we have that (14) is equal to

∂‖W‖2

∂zi
= f∗

∂g
∂zi

= f∗(V V ∗)−1

(
∂f
∂zi
− ∂V

∂zi
F
)

(15)

or equivalently
∂ f∗M−1f

∂zi
= f∗M−1D∗,i.

Since the only non-zero entry in D∗,i is in row ji :=
∑i
r=1 lr and is equal to f (li)(zi)−F (li)(zi), it

suffices to show that the ji-th entry in f∗M−1 is equal to the conjugate of

det M̂i

detM
(f (li−1)(zi)− F̂ (li−1)

i (zi)).

This follows from the repeated application of Cramer’s rule to get

uTi,liM
−1f = ± 1

detM

(
f li(zi) det(M̂i)− (mjiM̂

−1
i f̂i) det(M̂i)

)
,

and from the the fact that

F̂
(li−1)
i (zi) = vji V̂

∗
i M̂

−1
i f̂i = mjiM̂

−1
i f̂i

where vji is the ji-th row of V and mji is the ji-th row of M̂i. 2

Remark 14. If we assume that V has full rank at z, then the Jacobian of W has deficient rank
at z if and only if f (li)(zi) − F (li)(zi) = 0 for some i = 1, . . . ,m. This means that the common

roots of the system
{
∂‖W‖2
∂zi

= 0
}m
i=1

that we are going to find using Gauss-Newton method are

the common roots of
{
f (li−1)(zi)− F̂ (li−1)

i (zi) = 0
}m
i=1

.
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Note that if d = |E| then the condition z ∈ Cm \ ∆ implies that V = VE,l(z) is a square
invertible matrix. In this case the Weierstrass map is a complex analytic function, and we can
use the approach of Zeng (2005) applying the Gauss-Newton iteration to get an algorithm which
computes a local minimum of the Weierstrass map.

In the general case, when |E| > d and z ∈ Cm \∆, then V has more columns than rows and has
full rank, but the Weierstrass map is not a complex analytic function. However, next we make an
observation that is useful in determining the local convergence property of a Gauss-Newton map
applied to W in the general case.

Let J be the Jacobian of W and let J∗,i be the i-th column of J . Then using Theorem 9 and
(15) we have that

J∗∗,iW =
(
∂f
∂zi
− ∂V

∂zi
F
)∗

(V V ∗)−1V F (16)

=
(
∂f
∂zi
− ∂V

∂zi
F
)∗

(V V ∗)−1f (17)

=
(
∂‖W‖2

∂zi

)∗
. (18)

If z̃ is a local minimum of ‖W(z)‖2 then ∂‖W‖2
∂zi

(z̃) = 0 for i = 1, . . . ,m. Therefore J(z̃)∗W(z̃) = 0
(see also (Zeng, 2005, Lemma 2.5)). The Gauss-Newton iteration for W is

znew = z− J(z)†W(z) (19)

and locally converges to z̃ satisfying J(z̃)∗W(z̃) = 0, assuming that J(z̃) has full rank (see Dedieu
and Shub (2000)). Note that by Proposition 13 we have that the entries of J(z̃)∗W(z̃) are equal
to the conjugate of the expression in (12), and if J(z̃) has full rank then f (li)(z̃i) − F (li)(z̃i) 6= 0
for all i = 1, . . . ,m.

The next theorem gives a component-wise expression for the Gauss-Newton iteration in (19).

Theorem 15. Let f , m, l = (l1, . . . , lm), ∆, F , M and W be as above. For z = (z1, . . . , zm) ∈
Cm \∆ assume that the Jacobian J of W at z has full rank. Then the Gauss-Newton iteration for
W has the following component-wise expression:

znewj = zj −
det(Nj)

det(M) det(N)(f (lj)(zj)− F (lj)(zj))

where N is the m×m submatrix of M−1 with rows and columns indexed by
∑i
s=1 ls for i = 1, . . . ,m,

and Nj is the matrix obtained from N by replacing its j-th column by the vector

P :=
[
det(M̂i)

(
f (li−1)(zi)− F̂ (li−1)

i (zi)
)]T

i=1,...,m
.

Here M̂i and F̂i are defined in Definition 12.

Proof. Using the definition of M and F and Corollary 11 and also the matrix D defined in equation
(13) we get that (19) is equal to

znew = z− (D∗M−1D)−1D∗M−1f

11



where D is the matrix defined in (13) and f was defined (4). Let D̃ be the m×m diagonal matrix
consisting of the non-zero rows of D. Then we have

D∗M−1D = D̃∗ND̃

and the condition that the Jacobian J(z) has full rank is equivalent to both D̃ and N being
invertible. Therefore,

(D∗M−1D)−1D∗M−1f =
1

det(M)
D̃−1N−1P. (20)

Here we used the fact that the entry ofM−1f indexed by ji :=
∑i
s=1 ls is equal to det(M̂i)

det(M) (f (li−1)(zi)−
F̂

(li−1)
i (zi)) (see the proof of Proposition 13). The claim follows from Cramer’s rule applied for the
j-th entry of D̃−1N−1P . 2

Remark 16. Because of the multiple determinate calculations in the component-wise formula, it
is actually more efficient to compute the iteration function using Theorem 9, or to use (20). If we
use the assumption that the number of support elements and constraints are equal, Corollary 11
gives us an even more efficient way to construct the Jacobian.

5. Multivariate Interpolation

In the multivariate case the multiplicity structure of roots of a system can be described by the
vanishing of certain partial derivatives of the defining polynomials in the given roots. A theory of
the multiplicity structure in the language of dual algebras can be found in Marinari et al. (1995);
Stetter (2004); Mourrain and Ruatta (2002). Here we adopt the notation in Mourrain and Ruatta
(2002).

Notation 17. Let x = (x1, . . . , xn) be n variables.
• We use Λ or Λ(∂) to denote a polynomial in the partial derivatives ∂xi , i.e. Λ ∈ C[∂x1 . . . ∂xn ].
• For Λ ∈ C[∂x1 . . . ∂xn ], p ∈ C[x1, . . . , xn] and z ∈ Cn, we use Λ(p)(z) to denote Λ applied to the

polynomial p, and the result evaluated at z.

In the first definition we give the main ingredients of a multivariate Hermite interpolation.

Definition 18. Given
• Support E = {α1, . . . , αt} ⊂ Nn;
• ~z = (z1, . . . , zm) ∈ (Cn)m;
• The tangential conditions Λ = (Λ1, . . . ,Λm), where each Λi = {Λi,1, . . . ,Λi,li} ⊂ C[∂x1 . . . ∂xn

]
has cardinality li. We denote d :=

∑m
i=1 li.

12



The generalized Vandermonde matrix corresponding to E and Λ is the following d× t matrix:

VE,Λ(~z) :=

2666666666666666664

Λ1,1(xα1)(z1) · · · Λ1,1(xαt)(z1)

...
...

Λ1,l1(xα1)(z1) · · · Λ1,l1(xαt)(z1)

...
...

Λm,1(xα1)(zm) · · · Λm,1(xαt)(zm)

...
...

Λm,lm(xα1)(zm) · · · Λm,lm(xαt)(zm)

3777777777777777775

.

We assume that t ≥ d and define the set

∆E,Λ := {~z ∈ (Cn)m : rankVE,Λ(~z) < d} .

We may omit E, Λ and ~z from the notation of ∆ := ∆E,Λ and V := VE,Λ(~z).
We define ui,j to be the unit vector associated with Λi,j by

ui,j := [0 · · · 0︸ ︷︷ ︸ · · · 0 · · ·
j

1̂ · · · 0︸ ︷︷ ︸ · · · 0 · · · 0︸ ︷︷ ︸]T
l1 li lm

.

For fixed ~z ∈ (Cn)m \∆ the multivariate Hermite basis polynomials are defined by

hi,j(~z,x) := ~xEV †ui,j (21)

for i = 1, . . . ,m, j = 1, . . . , li, and ~xE := (xα1 , . . . ,xαt).

Remark 19. See for example Möller and Sauer (2000) for an investigation on what conditions on
the support elements in E ensure that V has maximal rank.

The next proposition is a straightforward generalization of the univariate case, so we omit the
proof.

Proposition 20. Let E, Λ, ~z ∈ (Cn)m \∆ and hi,j be as in definition 18. Then we have
• hi,j ∈ C[x1, . . . , xt]E.
•

Λr,s(hi,j)(zr) =

{
1, if i = r and j = s;
0, otherwise.

(22)

for all i, r = 1, . . . ,m, j = 1, . . . li and Λr,s ∈ Λr.

Next we define the Hermite interpolation of a polynomial f ∈ C[x].

Definition 21. Fix ~z = (z1, . . . , zm) ∈ (Cn)m \ ∆, f ∈ C[x], support E ⊂ Nn and multiplicity
structure Λ = (Λ1, . . . ,Λm). We define the multivariate Hermite interpolation polynomial

F (~z,x) :=
m∑
r=1

lr∑
s=1

Λr,s(f)(zr)hr,s(~z,x) (23)

where Λr,s ∈ Λr and hr,s was defined in Definition 18.

13



The next proposition is a straightforward consequence of the definition, so we omit the proof.

Proposition 22. Let ~z, f , E, Λ and F be as in Definition 21. Then
(1) F ∈ C[x]E;
(2) Λr,s(f − F )(zr) = 0 for all r = 1, . . . ,m and Λr,s ∈ Λr;
(3) F is the minimal 2-norm polynomial satisfying 1 and 2.
(4) ‖F‖22 = f∗M−1f where M := V V ∗ and

f = (Λ1,1(f)(z1), . . . ,Λm,lm(f)(zm))T ∈ Cd. (24)

We finish this section with a generalization of Theorem (9) and Corollary (11) to the multivariate
case. The proof is the same as the univariate case, and we omit it.

Theorem 23. Let f , V and F (~z,x) be as in Definition 21. Let F be the coefficient vector of F ,
and f be the evaluation vector of f defined in (24). If V is of maximal rank then

∂F
∂zi,j

= V †
(

∂f
∂zi,j

− ∂V

∂zi,j
F
)
.

Corollary 24. Let f , Λ, E and F (~z,x) be as in Definition 21. Let {hi,s} be the Hermite polyno-
mials defined in Definition 18 and define the projection

π : C[x]E → spanC{hi,j}
m li
i=1j=1.

Denote ~z = (z1, . . . , zm) and zi = (zi,1, . . . , zi,n). Then

π
∂F (~z,x)
∂zi,j

=
li∑
s=1

(∂xj
Λi,s)(f − F )(zi) hi,s(~z,x)

where ∂xj
Λi,s is the multiple of ∂xj

and Λi,s in C[∂x1 . . . ∂xn
].

6. Multivariate Weierstrass Map

In this section we generalize the univariate Weierstrass map to the case when we are given
N ≥ 1 polynomials f1, . . . , fN ∈ C[x1, . . . , xn]. Together with the polynomials we are also given
N sets of supports E1, . . . , EN . Furthermore, we also have m systems of tangential conditions
Λ = {Λ1, . . . ,Λm}, one for each desired common root, with cardinality |Λi| =: li as in Definition
18.

For the rest of the paper we assume that

d < min
i

(|Ei|),

where d :=
∑m
i=1 li as in Definition 18. This implies that we have to solve an under-constrained

system of equations in the interpolation problem, so it makes sense to talk about the nearest system
which satisfies the tangential conditions.

Definition 25. Let f1, . . . , fN , Λ, and E1, . . . , EN be as above. We define the multivariate
Weierstrass map as

14



W : (Cn)m \∆→
N⊕
i=1

C[x]Ei

~z 7→ (F1, . . . , FN )

where Fi is the Hermite interpolation polynomial corresponding to fi, Λ, Ei and ~z, as defined in
Definition 21. Here

∆ :=
N⋃
i=1

∆Ei,Λ

using the notation of Definition 18.

The next proposition summarizes the main properties of the Weierstrass map.

Proposition 26. The Weierstrass mapW, as defined in Definition 25, has the following properties:
(1) W(~z) = 0 for some ~z = (z1, . . . , zm) ∈ (Ct)m \∆ if and only if

Λj,k(fi)(zj) = 0 for all 1 ≤ i ≤ N, 1 ≤ j ≤ m, 1 ≤ k ≤ lj .

(2)

‖W (~z)‖22 =
N∑
i=1

f∗i M
−1
i fi

where fi is the evaluation vector of fi and Mi := ViV
∗
i for Vi := VEi,Λ(~z).

(3) If the minimum
min

~z∈(Cn)m\∆
‖W(~z)‖22

exists and is reached in (Cn)m \ ∆ then it is equal to the distance of (f1, . . . , fN ) from the
set of systems (f̃1, . . . f̃N ) such that for some ~ζ ∈ (Cn)m \∆ each f̃i satisfies the tangential
conditions Λ, and is obtained by a perturbation of the coefficients of fi corresponding to the
support Ei.

Proof. Properties (1) and (2) follow from Proposition 22. Property (3) follows from the fact that
if the minimum is taken at ~ζ ∈ (Cn)m \ ∆ then the corresponding Weierstrass image W(~ζ) =
(F1(~ζ,x), . . . , FN (~ζ,x)) will be the perturbations to obtain the nearest system(

f̃1, . . . f̃N

)
:=
(
f1 − F1(~ζ,x), . . . fN − FN (~ζ,x)

)
satisfying the conditions in the claim. 2

First we give explicitly the gradient of the map

‖W‖2 : (Cn)m \∆→ R.

Similarly as in the univariate case we can consider the vanishing of the partial derivatives ∂‖W‖2
∂zi,j

instead of the partial derivatives by the real and imaginary part of zi,j .
In order to give explicitly the gradient of the map ‖W‖2, we use Corollary 24 and the following

definition:

Definition 27. Given f1, . . . , fN , ~z = (z1, . . . , zm), Λ1, . . . , Λm and E1, . . . , EN as above. Let
F1, . . . , FN be as in Definition 25. For each i = 1, . . . , N define the d×mn block diagonal matrix
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Di

Di :=


Di,1

Di,2

. . .

Di,m


where each block Di,j has size lj × n and defined as

Di,j := [ (∂xk
Λj,s)(fi − Fi)(zj)]1≤s≤lj ,1≤k≤n . (25)

Let M1, . . . ,MN be as in Proposition 26. For each i = 1, . . . N , j = 1, . . .m and s = 1, . . . , li,j define
F̂i,j,s and M̂i,j,s to be the modification of Fi and Mi using the modified multiplicity structure

(Λ1, . . . ,Λj − {Λj,s}, . . . ,Λm).

Now we are ready to give an explicit formula for the gradient of the map ‖W‖2, which is a
generalization of (Zhi and Wu, 1998, Theorem 1) and Proposition 13 to the multivariate case.

Proposition 28. Using the notation of Definition 27, for j = 1, . . . ,m and k = 1, . . . , n the partial
derivatives ∂‖W‖2

∂zj,k
are equal to

∂‖W‖2

∂zj,k
=

X
i=1,...,N
s=1,...li,j

det M̂i,j,s

det Mi
(∂xk Λj,s)( fi − Fi)(zj) Λj,s( fi − F̂i,j,s)(zj).

Proof. Similarly to the univariate case, Corollary 24 implies that

Mi
∂M−1

i fi
∂zj,k

= Vi
∂Fi
∂zj,k

= [Di,j ]∗,k

where fi was defined in Proposition 26(2), Fi is the coefficient vector of Fi, Vi := VEi,Λ(~z) is the
Vandermonde matrix and [Di,j ]∗,k denotes the k-th column of the matrix Di,j defined in (25).
Therefore

∂
∑N
i=1 f∗iM

−1
i fi

∂zj,k
=

N∑
i=1

f∗iM
−1
i [Di,j ]∗,k

and the rest of the argument is the same as in the univariate case. 2

Next we apply the Gauss-Newton method to find the least squares solution of the multivariate
Weierstrass map. Since the structure of the matrices Di is not as simple as in the univariate
case, we cannot give component-wise formula for the Gauss-Newton iteration of the multivariate
Weierstrass map. Therefore, we only give an explicit formula for the Gauss-Newton iteration in
terms of the matrices Di and Mi.

Proposition 29. Let f1, . . . fN and W be as above. Using the notation above, for ~z ∈ (Cn)m \∆
the Gauss-Newton iteration for W is given by

~znew = ~z−

(
N∑
i=1

D∗iM
−1
i Di

)−1( N∑
i=1

D∗iM
−1
i fi

)
(26)
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where Mi and fi are defined in 26(2) and Di is defined in Definition 27.

Proof. Note that, using Corollary 24, we get that the Jacobian matrix of W is given by

J :=


V †1 D1

...

V †NDN

 (27)

where Vi = VEi,Λ(~z) is the Vandermonde matrix for i = 1, . . . , N . Then the claim follows from the
definitions of J†, W, Mi and Fi. 2

7. Simplified Iteration

In this section we consider a simplification of the iteration function in (26). The simplification
we propose is analogous to the idea used in the classical univariate Weierstrass iteration, which we
briefly describe first. The classical univariate Weierstrass iteration finds simultaneously all roots
of a given monic univariate polynomial f of degree m, and has the following simple and elegant
component-wise iteration function:

znewk = zk −
f(zk)∏

j 6=k(zk − zj)
k = 1, . . . ,m.

One can derive this formula by applying the Newton method to the corresponding Weierstrass
map, and then expressing the result in terms of the standard Lagrange polynomial basis at the
iteration point: the Jacobian of the Weierstrass map is diagonal in the Lagrange basis, which
results in the simple, component-wise iteration formula. Generalization of this to finding the roots
of multivariate systems were proposed in Ruatta (2001).

Now we explore an analogue of the above simplification to our problem of solving approximate
systems with given root multiplicities. Let N , f1, . . . , fN , E1, . . . , EN and Λ = (Λ1, . . . ,Λm) with
cardinality |Λi| = li be as in Section 6. We will need the assumption that we choose the number of
support elements in Ei so that the Vandermonde matrix Vi = VEi,Λ(~z) in Definition 18 is square
and invertible, i.e.

|Ei| = d :=
m∑
j=1

lj for all i = 1, . . . , N.

In this case the Hermite interpolation polynomials are defined from V −1
i , and form a basis for the

space of polynomials with support Ei. Then we can use Corollary 24 to give a simple expression
for the Jacobian of W in the basis of Hermite interpolation polynomials. Using (27) the Jacobian
of W written in the Hermite interpolation basis is the matrix

D :=


D1

...

DN


where Di is the block matrix defined in Definition 27. Also, the coefficient vector Fi of Fi written
in the basis of Hermite polynomials is equal to the evaluation vector fi of fi (since ViFi = fi).
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Thus, the Gauss-Newton iteration written in terms of the basis of Hermite polynomials at each
step of the iteration yields

~znew = ~z−D†f where f :=


f1
...

fN

 . (28)

Using the simple block structure of the matrices Di we can rearrange the rows of D to have a block
structure. This way we can get the following component-wise iteration function for the simplified
Gauss-Newton iteration:

znewi = zi −D†zi
fzi i = 1, . . . ,m, (29)

where

Dzi
=


D1,i

...

DN,i

 ∈ CNli×n, fzi
=



Λi,1(f1)(zi)
...

Λi,li(f1)(zi)
...

Λi,li(fN )(zi)


∈ CNli , (30)

and Dj,i is defined in Definition 27.
We must note that by changing the polynomial basis, we have changed the norm that we are

minimizing. In general, the iteration in (29) will converge to a different point than the iteration of
(26). In the exact case however, i.e. when the input system has roots with prescribed multiplicity,
the fixed points of (29) are the same as the fixed points of (26) since ‖W(z)‖2 = 0 if and only if
all entries of W are zero, regardless of the norm used.

The following proposition describes some of the fixed points of the simplified iteration. In-
formally, it asserts that if ~z∗ = (z∗1, . . . z

∗
m) ∈ (Cn)m is such that the corresponding vector of

perturbation functions (F1(~z∗,x), . . . , FN (~z∗,x)) is locally pointwise minimal around all z∗i , then
the simplified iteration (29) will have a fixed point in ~z∗. Thus, instead of finding the 2-norm min-
imum of the coefficient vector of the perturbation functions, the simplified iteration finds locally
pointwise minimal perturbation functions. As our numerical experiments demonstrate, the simpli-
fied iteration, when compared to other methods, will return the output with the smallest residual,
which is defined as the square root of

N∑
r=1

m∑
i=1

li∑
t=1

|Λi,t(fr)(z∗i )|
2 =

N∑
r=1

m∑
i=1

li∑
t=1

|Λi,t(Fr)(~z∗, z∗i )|
2
.

Proposition 30. Let f1, . . . , fN , E1, . . . , EN and F1, . . . FN be as above, with |Er| = d for all
r = 1 . . . , N . Let ~z∗ = (z∗1, . . . z

∗
m) ∈ (Cn)m. If there exists an open neighborhood U ⊂ Cmn − ∆

about the point ~z∗ such that for all ~z = (z1, . . . , zm) ∈ U and all ~z′ = (z′1, . . . , z
′
m) ∈ U

N∑
r=1

li∑
t=1

|Λi,t(Fr)(~z∗, z′i)|
2 ≤

N∑
r=1

li∑
t=1

|Λi,t(Fr)(~z, z′i)|
2 ∀ i = 1, . . . ,m, (31)
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then the iteration function (29) has a fixed point at ~z∗.

Proof. First note that ~z∗ is a fixed point of (29) if and only if D∗zi
fzi

= 0 at ~z∗ for all i = 1, . . . ,m.
On the other hand, if ~z∗ satisfies (31) then the partial derivatives

∂

∂zi,j

(
N∑
r=1

li∑
t=1

|Λi,t(Fr)(~z, z′i)|
2

)∣∣∣∣∣
~z=~z∗

= 0 (32)

for all i = 1, . . . ,m, j = 1, . . . , n and ~z′ = (z′1, . . . , z
′
m) ∈ U . Fix some i ∈ {1, . . . ,m} and

j ∈ {1, . . . , n}. Next we will simplify the partial derivatives in (32). First fix also r ∈ {1, . . . , N}
and t ∈ {1, . . . , li}. By Corollary 24 and our assumption on |Er| we have that

∂Fr(~z,x)
∂zi,j

=
li∑
s=1

(∂xj
Λi,s)(fr − Fr)(~z, zi) hi,s(~z,x).

Since the differential operators ∂/∂zi,j and Λi,t commute, it is easy to see that

∂

∂zi,j
Λi,t(Fr)(~z,x) =

li∑
s=1

(∂xj Λi,s)(fr − Fr)(~z, zi) Λi,t(hi,s)(~z,x),

and

∂

∂zi,j
|Λi,t(Fr)(~z,x)|2 =

(
li∑
s=1

(∂xj
Λi,s)(f − Fr)(~z, zi) Λi,t(hi,s)(~z,x)

)
Λi,t(Fr)(~z,x).

By the definition of hi,s we have that

Λi,t(hi,s)(~z, zi) =

{
1 if s = t

0 if s 6= t
.

Therefore, we get that

∂

∂zi,j

(
li∑
t=1

|Λi,t(Fr)(~z,x)|2
)∣∣∣∣∣

x=zi

=
li∑
t=1

(∂xj
Λi,t)(f − Fr)(~z, zi) Λi,t(Fr)(~z, zi). (33)

Now combining (32) and (33) with ~z = ~z′ = ~z∗ we get that

N∑
r=1

li∑
t=1

(∂xj
Λi,t)(f − Fr)(~z∗, z∗i ) Λi,t(Fr)(~z∗, z∗i ) = 0. (34)

Using that Λi,t(Fr)(~z∗, z∗i ) = Λi,t(fr)(z∗i ), (34) is equivalent to

f∗zi
Dzi |~z=~z∗ = 0,

which proves the claim. 2
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8. Numerical Results

The following three versions of the iterations described in the paper were implemented in Mat-
lab:

(1) The method with complete support. In this case we use the iteration defined in Proposition
29. The support consists of all monomials of total degree less than or equal to the total degree
of the input polynomials.

(2) The method with minimal support. In this case we again use the iteration from Proposition
29. However, the number of support elements is equal to the number of constraints, making
the Vandermonde matrices square.

(3) The simplified iteration. In this case we use the iteration defined in equation (29). The number
of support elements is equal to the number of constraints, making the Vandermonde matrices
square.

We generated random test cases in the following way:
– Two hundred random systems of three polynomials in three variables where generated.

– Random roots, z̄ = (z̄1, . . . , z̄m) ∈ (C3)m, were generated with 0 ≤ Re(z̄i,j) ≤ 1 and
0 ≤ Im(z̄i,j) ≤ 1. We considered cases where m = 2 and m = 3.

– A Vandermonde system was solved with minimal support to ensure the system had the
common roots with multiplicity.

– The resulting system was then perturbed by a random polynomial with known 2-norm,√
3× 10−6.

– The three iteration methods described above were applied to each of these perturbed
systems.

– The initial iterate for the root was chosen to be 0.4 from the original root z̄ of the
non-perturbed system.

– If the iteration did not converge, a new initial iterate half the distance from the original
root was chosen, and the algorithm was repeated.

– After 10 tries, if the iteration still failed, then that case was labeled divergent.
To explain our results, the following definitions based on the list above are useful:

• f̄ = {f̄1, . . . , f̄N} is the polynomial system that has the desired root structure.

• z̄ = (z̄1, . . . , z̄m) are the common roots of f̄ with the given multiplicity structure Λ =
(Λ1, . . . ,Λm).

• f = {f1, . . . , fN} is the perturbed system.

• z∗ = (z∗1, . . . , z
∗
m) is the m-tuple of the computed roots.

• f∗ = {f∗1 , . . . , f∗N} is the computed polynomial system with roots z∗ which have the
multiplicity structure Λ.

• f(x) is the evaluation vector of the polynomial system f at a point x = (x1, . . . ,xm), i.e.

f(x) = (Λ1,1(f1)(x1), . . . ,Λm,lm(f1)(xm), . . . ,Λm,lm(fN )(xm)).

The columns of the Figures 1, 2, 3, 4 are defined as follows:
– Method refers to the type of iteration used.
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Method
End Res.

(10−4)

Distance

(10−4)

from Original

Avg. Iterations
Avg. Time

(sec)

Complete 4.731 1.694 20.82 53.54

Simplified 2.632 13.34 6.53 6.762

Square 3.846 1.200 6.18 6.081

Fig. 1. 3 polynomials, total degree 5, in 3 unknowns. Looking for closest system with 2 roots of multiplicity
3 each. Test cases were generated by perturbing a system with known root structure by 1.74× 10−4. The
residual of the known roots in the perturbed system was 6.288× 10−4 for the complete support case and
4.356× 10−4 for the other cases.

Method
End Res.

(10−4)

Distance

(10−4)

from original

Avg. Iterations
Avg. Time

(sec)

Complete 6.351 1.719 24.19 105.3

Simplified 3.829 33.03 7.665 13.37

Square 5.832 1.171 6.995 12.41

Fig. 2. 3 polynomials, total degree 5, in 3 unknowns. Looking for closest system with 3 roots of multiplicity
3 each. Test cases were generated by perturbing a system with known root structure by 1.74× 10−4. The
residual of the known roots in the perturbed system was 7.867× 10−4 for the complete support case and
6.250× 10−4 for the other cases.

– The ending residual (End Res.) is defined as ‖f(z∗)‖2.

– The Distance from Original is defined as ‖f − f∗‖2. Note that the polynomials in the
difference f − f∗ has prescribed support by construction, and the 2-norm is the 2-norm
of the coefficient vectors in the given supports.

– The average iterations (Avg. Iterations) is defined as the average number of iterations
needed. The iteration terminates when an iteration step fails to reduce the residual by
at least 1%.

– The average time (Avg. Time) is the average time in seconds it took the given method
to complete.

– In the caption of each figure we note the beginning residual. The beginning residual is
defined as ‖f(z̄)‖2.

The only divergent cases observed occurred in the complete support case of figure 2. In this
instance 3.5% of cases were divergent. In all the test runs, over 70% of test cases converged with
an initial iterate that shared only one significant digit with the roots of the original system.
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