
Lecture Notes 9.
MA 722

Real Polynomial Optimization II.

Goal

This is a continuation of Lecture Notes 8. Let us repeat the three topics of
these notes. We will consider 2. and 3. and its relaxations in this lecture
note.

1. Positive definite polynomials Let f ∈ R[x1, . . . , xn]. Decide if f(x) ≥
0 for all x ∈ Rn.

2. Unconstrained polynomial optimization Let f ∈ R[x1, . . . , xn]. Find
p∗ = minx∈Rn f(x).

3. Polynomial optimization over semi-algebraic sets Let f, g1, . . . , gr ∈
R[x1, . . . , xn] and define K = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0}.
Find p∗K = minx∈K f(x).

Papers [3], [1] and [2] are used to write these lecture notes.

2 Unconstrained polynomial optimization

Let f ∈ R[x1, . . . , xn]. The unconstrained polynomial optimization problem
is to find

f ∗ := min
x∈Rn

f(x). (Global-Opt)

First we discussed the analogue of the sum of squares relaxation discussed in
Lecture Notes 8.
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2.1 Sum of squares relaxation

The main idea of the relaxation method is to find the largest possible number
p∗ ∈ R such that f−p∗ is a sum of squares, which problem can be solved using
semidefinite optimization methods, as discussed below. If the non-negative
polynomial f − f ∗ happens to be a sum of squares, then clearly f ∗ = p∗.
Otherwise we have f ∗ ≥ p∗. The following definition gives the semidefinite
formulation.

Definition 2.1. Let f =
∑
|α|≤2d fαx

α ∈ R[x1, . . . , xn]. Without loss of
generality we can assume that the constant term f0 of f is zero, since
minx∈Rn(f(x)− f0) = p∗ − f0.

The primal semidefinite optimization problem is to find :
p∗ := sup

(
−B0 •Q : Q ∈ R(d+n

n )×(d+n
n )

S

)
s.t. Bα •Q = fα ∀α ∈ Nn, |α| ≤ 2d, α 6= 0,

Q � 0,

(Pr-Opt)

where Bα ∈ R(d+n
n )×(d+n

n )
S has 1 in entries that appear in the coefficients of

xα in the polynomial X · Q ·XT with X = [xγ : |γ| ≤ d]T , and 0 otherwise.
Note that B0 •Q is the entry of Q corresponding to the constant term.

The corresponding dual semidefinite optimization problem is to find{
p̄∗ := inf

(∑
|α|≤2d fαyα : y = [yα : |α| ≤ 2d] ∈ R(2d+n

n )
)

s. t. y0 = 1 and Md(y) � 0,
(Du-Opt)

where Md(y) denotes the degree d moment matrix, as in Definition 1.7 in
Lecture Notes 8.

The following theorem is a consequence of the Farkas Lemma for SDP’s
and the fact that there is always a moment matrix such that Md(y) � 0:

Theorem 2.2. There is no duality gap, i.e. p∗ = p̄∗. Furthermore, if p̄∗ >∞
then (Pr-Opt) has a solution.

We have the following formulation to find f ∗ if f−f ∗ is a sum of squares:
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Theorem 2.3. Let f =
∑
|α|≤2d fαx

α ∈ R[x1, . . . , xn] of total degree 2d and
assume that f0 = 0. If the nonnegative polynomial f−f ∗ is a sum of squares
then the problem (Global-Opt) is equivalent to the semidefinite optimization
problems (Pr-Opt) and (Du-Opt), and f ∗ = p∗ = p̄∗. Furthermore, if x∗ ∈ Rn

such that f ∗ = f(x∗), then

y∗ =
[
1, x∗1, x

∗
2, . . . , (x

∗
1)

2, x∗1x
∗
2, . . . , (x

∗
n)2d

]
is a minimizer for (Du-Opt).

The natural question that arises is that how can we prove that the opti-
mum p∗ that we found with semidefinite programming is the global optimum
f ∗ of f over Rn. The following theorem, which we do not prove here, is a
necessary condition for p∗ = f ∗. The proof uses the theory of flat extensions
of moment matrices.

Theorem 2.4. Let f ∈ R[x1, . . . , xn] be of degree 2d with zero constant
term, and suppose that the optimal solution p̄∗ of (Du-Opt) is attained at

y∗ ∈ R(2d+n
n ). If

rank Md−1(y
∗) = rank Md(y

∗)

then f ∗ = p̄∗ = p∗. Furthermore, if rank Md−1(y
∗) = rank Md(y

∗) = r then
there are r global minimizers.

Example 2.5: Continuing Example 1.3 form Lecture Notes 8, let

f(x) = 2x4 + 2x3 − x2 ∈ R[x]

with zero constant term. We can write f −f∗ using a symmetric matrix Q ∈ R3×3
S

f(x)− f∗ =
[

1 x x2
]
·

 q11 q12 q13
q12 q22 q23
q13 q23 q33

 ·
 1

x
x2


= q33x

4 + 2q23x
3 + (q22 + 2q13)x

2 + 2q12x + q11.

Comparing coefficients we get the following linear equations for the entries of Q:

{q33 = 2, 2q23 = 2, q22 + 2q13 = −1, 2q12 = 0, q11 = −f∗}. (1)
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So the primal semidefinite optimization problem is given by
supQ∈R3×3(−q11)
q33 = 2, 2q23 = 2, q22 + 2q13 = −1, 2q12 = 0

Q � 0.

The corresponding dual problem is

infy∈R5(2y4 + 2y3 − y2) y0 y1 y2

y1 y2 y3

y2 y3 y4

 � 0

y0 = 1.

By solving the dual problem we get that the minimum is−1 and y∗ = [1,−1, 1,−1, 1]
is a minimizer. To use Theorem 2.4 to test whether −1 is the global optimum of
f we compare

rank M2(y
∗) = rank

 1 −1 1
−1 1 −1

1 −1 1

 = 1 = rank M1(y
∗) =

[
1 −1
−1 1

]
.

therefore
min
x∈R

f(x) = −1,

and the minimum is taken at x = −1 (note that in the univariate case f − f∗ is
always a sum of squares). The SOS decomposition for f +1 is given by the optimal
solution for the primal problem:

Q =

 1 0 −1
0 1 1
−1 1 2

 = L · LT , L =

 1 0
0 1
−1 1

 .

2.2 Lasserre’s relaxation

In the general case, when f − f ∗ is not a sum of square, we can apply several
approaches. One natural approach is to try to find the largest p∗D ∈ R such
that a degree D Hilbert-Artin representation for f − p∗D exists (see Section
1.3 in Lecture Notes 8 for the Hilbert-Artin representation). By gradually
increasing D one may prove that we converge to f ∗ from below.
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In this section we give a slightly different approach, which is in the paper
[1]. This approach naturally generalizes to constrained polynomial optimiza-
tion problems that we will discuss in the next section. The main idea is to
constrain the problem to a compact ball of radius a . Define the quadratic
polynomial

θa(x) := a2 − ‖x‖22,

the compact ball Ka := {x ∈ Rn : θa(x) ≥ 0}, and

f ∗a := min
x∈Ka

f(x).

Clearly, if we know a priori that the 2-norm of the global minimizer x∗ is
bounded by a then f ∗ = minx∈Rn f(x) = f ∗a = minx∈Ka f(x). The following
result will allow us to formulate the computation of f ∗a as a semidefinite
optimization problem:

Theorem 2.6. Let f ∈ R[x1, . . . , xn], and assume that f(x) is strictly
positive for all x ∈ Ka. Then there exists p, q ∈ R[x1, . . . , xn], both are
sums of squares polynomials, such that

f(x) = p(x) + q(x)θa(x).

The degrees of p and q can by higher than the degree of f .

Note that if the degree of p is 2D then the degree of q is 2(D − 1). We
get the following semidefinite optimization problem for a fixed D:

Definition 2.7. Let f =
∑
|α|≤2d fαx

α ∈ R[x1, . . . , xn], and assume that the
constant term f0 of f is zero. Fix D ≥ d, and a ∈ R. The primal semidefinite
optimization problem is to find:
p∗a,D := sup

(
−P0 − a2Q0 : P ∈ R(D+n

n )×(D+n
n )

S , Q ∈ R(D−1+n
n )×(D−1+n

n )
S

)
s.t. Bα • P + Cα •Q = fα ∀α ∈ Nn, |α| ≤ 2d, α 6= 0,

Bα • P + Cα •Q = 0 ∀α ∈ Nn, |α| > 2d,

P � 0, Q � 0.

(Primal-Degree-D)
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Here for α 6= 0 the symmetric matrix Bα ∈ R(D+n
n )×(D+n

n )
S is the same as above,

and Cα ∈ R(D−1+n
n )×(D−1+n

n )
S represent the coefficients of xα in the polynomial

θa(x) ·X ·Q ·XT with X = [xγ : |γ| ≤ D− 1]T . Also, P0 and Q0 denotes the
entries corresponding to the constant term in P and Q, respectively.

The corresponding dual semidefinite optimization problem is to find:
p̄∗a,D := inf

(∑
|α|≤2d fαyα : y = [yα : |α| ≤ 2D] ∈ R(2D+n

n )
)

s.t. y0 = 1,

MD(y) � 0,

MD−1(θa y) � 0.

(Dual-Degree-D)

where MD(y) denotes the degree D moment matrix as above and MD−1(θa y)
is the shifted moment matrix defined in Definition 1.11 in Lecture Notes 8.

The following theorem is due to Lasserre in [1]:

Theorem 2.8. Let f ∈ R[x1, . . . , xn] of degree 2d, f ∗ = minx∈Rn f(x) and
assume that ‖x∗‖ < a for the global minimizer. Then

(a) as D →∞
p̄a,D ↑ f ∗.

(b) p̄a,D = f ∗ if and only if

f(x)− f ∗ =

r1∑
i=1

pi(x)2 + θ(x)

r2∑
i=1

qi(x)2 (2)

for some pi ∈ R[x] of degree D and qi ∈ R[x] of degree D − 1. In
addition, for the global minimizer x∗ ∈ Rn of f , the vector

y∗ = [(x∗)α : |α| ≤ 2D] ∈ R(2D+n
n )

is a minimizer for the dual problem in degree D.

Proof. (a) From x∗ ∈ Ka we have for y∗ = [(x∗)α : |α| ≤ 2D] that

MD(y∗) � 0 and MD−1(θay
∗) � 0.
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Therefore y∗ is a feasible solution for the dual for any D, thus f ∗ must be
greater or equal than the infimum p̄∗a,D of the dual for any D.
Now fix ε > 0. Since f(x)− (f ∗ − ε) is strictly positive on Ka, by Theorem
2.6 there exists D0 such that

f(x)− f ∗ + ε =

r1∑
i=1

pi(x)2 + θ(x)

r2∑
i=1

qi(x)2

for some pi ∈ R[x] of degree D0 and qi ∈ R[x] of degree D0 − 1. This shows
that the primal problem of degree D0 is solvable (as well as for any D ≥ D0).
The weak duality implies that p̄∗a,D0

≥ p∗a,D0
, therefore

f ∗ − ε ≤ p∗a,D0
≤ p̄∗a,D0

≤ f ∗.

The claim that p̄a,D converges from below to f ∗ follows from the fact that
p̄a,D ≥ p̄a,D′ whenever D ≥ D′.

(b) ”⇒”: If p̄a,D = f ∗ the clearly y∗ = [(x∗)α : |α| ≤ 2D] is a minimizer
for the dual at degree D. One can prove that there is no duality gap between
p̄a,D and pa,D by constucting y such that MD(y),MD−1(θsy) � 0, and using
the Farkas Lemma for SDP’s. Therefore the primal problem is also solvable
with its maximum equal to f ∗, and the maximizers P ∗, Q∗ give the desired
decomposition of f − f ∗ as in (2).
”⇐”: If a decomposition of f − f ∗ as in (2) exists then that gives a feasible
solution for the primal problem at degree D, thus

f ∗ ≤ p∗a,D.

But f ∗ is also an upper bound for p∗a,D for all D since for all p > f ∗ f(x)− p
must have negative values on Ka. Using again that there is no duality gap
we have that f ∗ = p∗a,D = p̄∗a,D.

3 Real optimization over semi-algebraic sets

3.1 Infeasibility certificates and the Positivestellensatz

First we recall some well-known certificates of infeasibilty for different com-
putational problems, giving a context for the statements in the Positivestel-
lensatz.
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Range-kernel: Let A ∈ Fm×n, b ∈ Fm for some field F . Then

Ax = b is infeasible in F n

⇔ ∃y ∈ Fm s. t. ATy = 0, bTy = 1.

Hilbert’s Nullstellensatz: For h1, . . . , hm ∈ C[x1, . . . , xm]

h1(x) = · · · = hm(x) = 0 is infeasible in Cn

⇔ 1 ∈ Ideal(h1, . . . , hm).

Farkas Lemma: Given A ∈ Rm×n,b ∈ Rm, C ∈ Rl×n,d ∈ Rl.{
Ax = b

Cx ≥ d
is infeasible in Rn

⇔ ∃y ∈ Rm, z ≥ 0 ∈ Rl


ATy + CTz = 0

bTy + dTz = −1

z ≥ 0.

Before we describe the statement of the Positivestellensatz we need some
definitions.

Definition 3.1. Let f1, . . . , fm ∈ R[x1, . . . , xn]. The cone P = P (f1, . . . , fm)
generated by f1, . . . , fm is the smallest subset of R[x1, . . . , xn] containing

1. f1, . . . , fm,

2. a2 for all a ∈ R[x1, . . . , xn],

3. a+ b for all a, b ∈ P ,

4. ab for all a, b ∈ P .

Note that P (∅) is the set of polynomials which are sum of squares. Also note
that

P (f1, . . . , fm) = {p0 + p1f1 + p1,2f1f2 + · · ·+ pi1,...,itfi1 · · · fit | ∀pj1,...,ju ∈ P (∅)}
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Let g1, . . . , gr ∈ R[x1, . . . , xn]. The multiplicative monoid M(g1, . . . , gr) gen-
erated by g1, . . . , gr is the set of finite products

M(g1, . . . , gr) = {gi1 · · · git : t ≥ 0, 1 ≤ i1 ≤ · · · ≤ it ≤ r} .

Note that M(∅) = {1}.

Next we state the Positivestellensatz, which gives a certificate for the
emptyness of a real semi-algebraic set.

Theorem 3.2 (Positivestellensatz). Let f1, . . . , fm, g1, . . . , gr, h1, . . . , hs ∈
R[x1, . . . , xn]. Then

fi(x) ≥ 0 i = 1, . . . ,m

gi(x) 6= 0 i = 1, . . . , r

hi(x) = 0 i = 1, . . . , s

is infeasible in Rn

⇔ ∃f ∈ P (f1, . . . , fm), g ∈M(g1, . . . , gr), h ∈ Ideal(h1, . . . , hm)

s.t. f + g2 + h = 0.

Partial proof. We only prove the easier “⇐” direction. Assume we have
f ∈ P (f1, . . . , fm), g ∈ M(g1, . . . , gr), h ∈ Ideal(h1, . . . , hm) such that f +
g2 + h = 0. Suppose x0 ∈ {x ∈ Rn : ∀ i fi(x) ≥ 0, gi(x) 6= 0, hi(x) = 0},
i.e. it is not empty. But then it is easy to see that f(x0)+g2(x0)+h(x0) > 0,
a contradiction.

For any fixed degree D, one can test the existence of a certificate (f, g, h)
of degree at mostD using a semidefinite feasibility program: Given f1, . . . , fm,
g1, . . . , gr, h1, . . . , hs ∈ R[x1, . . . , xn] we define f , g and h as follows:

• If r = 0 define g := 1. If r ≥ 1 and some of the gi has positive degrees
then g :=

∏r
i=1 g

m
i for a maximal m such that deg g ≤ D.

• Define unknown polynomials pj1,...,ju such that f := p0+p1f1+p1,2f1f2+
· · ·+pi1,...,itfi1 · · · fit has degree D and each pj1,...,ju is a sum of squares.
This can be achieved by imposing positive semi-definiteness on matrices
of appropriate sizes.

• Define the unknown polynomials q1, . . . , qs such that h = q1h1 + · · · +
qshs has degree D.
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• The linear constrains for the coefficients of pj1,...,ju and qj comes from
the coefficients of f + g2 + h being all 0.

Clearly, for a fixed D the polynomials f, g, h defined above are solutions
of a semidefinite feasibility problem, but in the most general case the number
of unknown variables in this semidefinite program is too high for practical
computations. In what follows we discuss a few spacial cases where stronger
versions of the Positivestellensatz are valid, which allow more efficient com-
putation.

3.2 Compact semi-algebraic sets

In this subsection we consider compact semi-algebraic sets, and give an ex-
tension of the results in Subsection 2.2 of the Lasserre relaxation.

Given f1, . . . , fm ∈ R[x1, . . . , xn], let

K = {x ∈ Rn : f1(x) ≥ 0, . . . , fm(x) ≥ 0}.

Assume that K is a compact set. Moreover, to satisfy some technical as-
sumptions we will also assume that the polynomial θa = ‖x‖22−a2‖ is among
the fi’s for some a ∈ R.

Then we have the following stronger version of the Positivestellensatz:

Theorem 3.3. Let K = {x ∈ Rn : f1(x) ≥ 0, . . . , fm(x) ≥ 0} be as above.
For f ∈ R[x1, . . . , xn] assume that F (x) > 0 for all x ∈ K. Then there exists
p0, p1, . . . , pm sum of squares polynomials such that

f(x) = p0(x) +
m∑
i=1

f(x)pi(x).

Note that f(x) > 0 for all x ∈ K if and only if the set {x ∈ Rn :
−f(x) ≥ 0, f1(x) ≥ 0, . . . , fm(x) ≥ 0} is empty. There for we can apply
Theorem 3.2 to certify that f(x) > 0 on K but it gives a weaker version than
then Theorem 3.3., involving sum of square multiples of F as well.

Theorem 3.3 can be used to solve optimization problems over compact
semi-algebraic sets by solving a sequence of semidefinite optimization prob-
lems for increasing values of D. The following formulation is a straightfor-
ward generalization of Lasserre’s relaxtion presented in Subsection 2.2.
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Definition 3.4. Given f1, . . . fm such that K = {x ∈ Rn : f1(x) ≥
0, . . . , fm(x) ≥ 0} is compact and satisfies the above technic al assumptions.
Let f =

∑
|α|≤2d fαx

α ∈ R[x1, . . . , xn] with zero constant term, and define

f ∗K := minx∈K f(x).
The primal semidefinite optimization problem of degree D is given by

p∗K,D := sup

(
−P0 −

∑m
i=1 fi(0)Pi,0 : Pi ∈ R(D+n

n )×(D+n
n )

S

)
s.t. B0,α • P0 +

∑m
i=1Bi,α • Pi = fα ∀α ∈ Nn, |α| ≤ 2d, α 6= 0,

B0,α • P0 +
∑m

i=1Bi,α • Pi ∀α ∈ Nn, |α| > 2d,

P � 0, . . . , Pm0.

Here for α 6= 0 the symmetric matrix B0,α ∈ R(D+n
n )×(D+n

n )
S correspond to the

coefficient os xα in ·X·P0·XT , whileBi,α ∈ R(D−deg(fi)+n
n )×(D−deg(fi)+n

n )
S represent

the coefficients of xα in the polynomial fi(x) · X · Pi · XT for i = 1, . . .m.
Here X = [xγ]T is the vector of monomials of appropriate degrees. Also, Pi,0
denotes the entries corresponding to the constant term in Pi.

The corresponding dual semidefinite optimization problem is to find:
p̄∗K,D := inf

(∑
|α|≤2d fαyα : y = [yα : |α| ≤ 2D] ∈ R(2D+n

n )
)

s.t. y0 = 1,

MD(y) � 0,

MD−deg(fi)(fi y) � 0 i = 1, . . . ,m.

whereMD(y) denotes the degreeD moment matrix as above andMD−deg(fi)(fi y)
is the shifted moment matrix defined in Definition 1.11 in Lecture Notes 8.

Analogously to Theorem 2.8 one can prove that p∗K,D converges to f ∗K
from below as D approaches infinity.

3.3 Finite sets

Next we discuss the case when K is a finite algebraic set. We will prove that
positive polynomials over finite sets are always sums of squares, modulo the
defining equations of the finite set.
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Let h1, . . . , hs ∈ R[x1, . . . xn] such VC(h1, . . . , hs) ⊂ Cn is finite, i.e.
h1, . . . , hs has finitely many roots in Cn. Assume further that I = Ideal(h1, . . . , hs)
is a radical ideal. Let

K = VC(h1, . . . , hs) ∩ Rn.

The next theorem states that positive polynomials are sum of squares modulo
the ideal I.

Theorem 3.5. Let h1, . . . , hs ∈ R[x1, . . . xn], and K as above. Let f ∈
R[x1, . . . xn] such that f(x) > 0 for all x ∈ K. Then there exists a sum of
square polynomial p and polynomials q1, . . . , qs such that

f(x) = p(x) +
s∑
i=1

qi(x)hi(x).

Proof. Let VC(h1, . . . , hs) = {z1, . . . , zk} ⊂ Cn, and assume that the first
t of them are the real roots. Since I is radical, the factor algebra A :=
C[x1, . . . , xn]/I has dimension is k. Let B = {xα1 , . . . ,xαk} be a normal set
for A. Then the Vandermonde matrix

V :=
[
zαi
j

]k
i,j=1

(3)

is non-singular. For i = 1, . . . , k let li(x) ∈ C[x1, . . . , xn] be the Lagrange
basis polynomials with support B, i.e. such that li(zj) = δi,j (note that their
coefficients corresponding to the rows of V −1). Then for each i = 1, . . . , t
when zi ∈ Rn we have li ∈ R[x1, . . . xn] since its complex roots pair up in
complex conjugates. Thus for i = 1, . . . , t we can define

pi(x) = f(zi)l
2
i (x) ∈ R[x1, . . . , xn].

The k − t complex roots pair up in complex conjugates of each other, and
we can assume that the pairs are consecutively numbered. For each such
conjugate pairs zj = zj+1 (j > t) we define a polynomial

p j+1+t
2

:=

(√
f(zj)lj(x) +

√
f(zj+1)lj+1(x)

)2

.

12



Again, p j+1+t
2
∈ R[x1, . . . , xn], since

√
f(zj)lj(x) is the complex conjugate of√

f(zj+1)lj+1(x). Let

p(x) :=

(t+n)/2∑
i=1

pi(x). (4)

Since f(zi) > 0 for all zi ∈ K we have that p is a sum of squares. Further-
more, for all i = 1, . . . , k we have that

p(zi) = f(zi),

therefore, since I is radical, f = p mod I. Thus there exists q1, . . . qs such
that

f(x) = p(x) +
s∑
i=1

qi(x)hi(x).

Lastly, qi ∈ R[x1, . . . , xn] since its coefficients are solutions of a linear system
with real coefficients.

Note that if all common roots of h1, . . . , hs are real, then the sum of
square polynomial p defined in (4) is equal to

p(x) = XT ·
(
V −1

)T · diag(f(z1), . . . , f(zk)) · V −1 ·X,

where V is the Vandermonde matrix defined in (3), and X = [xα1 , . . . ,xαk ]T .
Recall that the Hermite matrix of g modulo I is defined as

Hg = V Tdiag(g(z1), . . . , g(zk))V

for any g ∈ R[x1, . . . , xn]. Thus,(
V −1

)T
diag(f(z1), . . . , f(zk))V

−1 = H−11/f .

This implies that in the case when h1, . . . , hs has only real roots, we can
compute p(x) without computing the roots z1, . . . , zk, using traces, as was
discussed in an earlier class note.
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Example 3.6: Let

f = x2 + y2 − z2 + 1,


h1 = yx− z

h2 = zy − x

h3 = zx− y.

We will show that h1, h2, h3 has only real roots, f is positive on these roots, and
give a sum of square decomposition of f modulo I = 〈h1, h2, h3〉. We do this
without computing the common roots of I, but rather by computing the inverse
of the Hermite matrix H−11/f .

First we compute a Gröbner basis for I with respect to the graded lexicographic
ordering x > y > z:

G = [zy − x,−z2 + y2, zx− y, yx− z,−z2 + x2,−z + z3]

Thus the normal set of I w.r.t. this ordering is B = [1, z, y, x, z2]. Using the
Groöbner bases we can compute g = 1/f mod I as follows: If

g = 1/f = g0 + g1x + g2y + g3z + g4z
2

then we get that fg reduced by G is

Reduce(fg,G) = g0 + 2 g3z + 2 g1x + 2 g2y + (2 g4 + g0) z
2

which has to be 1. Comparing coefficients we get that

g = 1− 1/2 z2.

Now the Hermite matrix of g w.r.t. the normal set B = [1, z, y, x, z2] is

Hg =


Tr(Mg) Tr(Mzg) Tr(Myg) Tr(Mxg) Tr(Mz2g)
Tr(Mzg) Tr(Mz2g) Tr(Myzg) Tr(Mzxg) Tr(Mz3g)
Tr(Myg) Tr(Myzg) Tr(My2g) Tr(Mxyg) Tr(Myz2g)
Tr(Mxg) Tr(Mxzg) Tr(Mxyg) Tr(Mx2g) Tr(Mxz2g)
Tr(Mz2g) Tr(Mz3g) Tr(Mz2yg) Tr(Mz2xg) Tr(Mz4g)



=



3 0 0 0 2

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

2 0 0 0 2


,
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where Tr(Mq) is the trace of the multiplication matrix of q mod I. We can see
that Hg is strictly positive definite, which implies that all common roots of I
are real, and that f is strictly positive on the roots. We get the sum of square
decomposition of f by computing the the Cholesky factorization of H−1g :

H−1g = L · LT , L =



1 0 0 0 0

0 1/2
√

2 0 0 0

0 0 1/2
√

2 0 0

0 0 0 1/2
√

2 0

−1 0 0 0 1/2
√

2


.

Multiplying H−1g = L · LT , L by the vector [1, z, y, x, z2] and its transpose from
both sides we get that

p = 1− 3/2 z2 + 1/2 y2 + 1/2x2 + 3/2 z4

= (1− z2)2 + (1/
√

2 z)2 + (1/
√

2 y)2 + (1/
√

2x)2 + (1/
√

2 z2)2,

is a sum of squares, and

f − p = −1

2

(
z2 + y2 + x2 − 3z4

)
= −1

2

(
(3z3 − z)h1 + (−3z2x− x)h2 + (−3zx− y)h3

)
,

giving the proof that f is a sum of squares modulo the ideal.
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