
Lecture Notes 8.
MA 722

Real Polynomial Optimization I.

Goal

The ultimate goal is to solve the following three problems. Since these prob-
lems are hard in general, we will study relaxations of them.

1. Positive definite polynomials Let f ∈ R[x1, . . . , xn]. Decide if f(x) ≥
0 for all x ∈ Rn.

2. Unconstrained polynomial optimization Let f ∈ R[x1, . . . , xn]. Find
p∗ = minx∈Rn f(x).

3. Polynomial optimization over semi-algebraic sets Let f, g1, . . . , gr ∈
R[x1, . . . , xn] and define K = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0}.
Find p∗K = minx∈K f(x).

Papers [4], [3] and [1] are used to write these lecture notes.

1 Positive definite polynomials

First we will discuss a relaxation of the problem of deciding if f is positive
definite to a simpler problem, namely, to decide whether f can be expressed
as a sum of squares. Then we will study the general case.

Definition 1.1. Let f ∈ R[x1, . . . , xn] and assume that the total degree
of f is 2d. Then f is a sum of squares (SOS) if there exists q1, . . . , qt ∈
R[x1, . . . , xn] of degrees at most d such that f =

∑t
i=1 q

2
i .

Clearly SOS polynomials are positive definite. However the following
example due to Motzkin shows that not all positive definite polynomials are
SOS.
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Example 1.2: The Motzkin polynomial is

M(x, y, z) = x4y2 + x2y4 + 1− 3x2y2

is positive definite, but not a sum of squares. To see that M(x, y, z) is positive
definite we use the inequality between the arithmetic and geometric means:

x4y2 + x2y4 + 1
3

≥ 3
√

x4y2 · x2y4 · 1 = x2y2.

To prove that M(x, y, z) is not an SOS one can use techniques described later
in these lecture notes, by constructing an exact solution for the dual semidefinite
problem (see the actual certificate in [1, Example 5.1]).

The following simple example illustrates that finding an SOS decomposi-
tion for f can be reduced to finding a positive semi-definite symmetric matrix
satisfying certain linear constrains.

Example 1.3: Let

f(x) = 2x4 + 2x3 − x2 + 5 ∈ R[x].

We can write f using a symmetric matrix Q ∈ R3×3
S (we will use the notation

RN×N
S for the vector space of symmetric N ×N real matrices):

f(x) =
[

1 x x2
]
·

 q11 q12 q13

q12 q22 q23

q13 q23 q33

 ·
 1

x
x2


= q33x

4 + 2q23x
3 + (q22 + 2q13)x2 + 2q12x + q11.

Comparing coefficients we get the following linear equations for the entries of Q:

{q33 = 2, 2q23 = 2, q22 + 2q13 = −1, 2q12 = 0, q11 = 5}. (1)

Any positive semi-definite matrix Q that satisfies these linear constrains gives an
SOS decomposition for f . For example,

Q =

 5 0 −3
0 5 1
−3 1 2


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satisfies the the constrains in (1) and is positive semi-definite:

Q = LT · L with L =
1√
2

[
−3 1 2
1 3 0

]
which gives the SOS decomposition

f(x) =
[

1 x x2
]
· LT · L ·

 1
x
x2


=

1
2

(2x2 + x− 3)2 +
1
2

(3x + 1)2.

The next subsection gives a brief introduction to semidefinite program-
ming, which we will use to solve the SOS problem.

1.1 Semi-definite Programming

There are many different notation to define semi-definite programs, here we
adopt the following the one using the trace inner product of matrices.

Definition 1.4. Denote by RN×N
S the space of N ×N real symmetric matri-

ces, and for X ∈ RN×N
S denote by X � 0 if X is positive semi-definite. First

we define the following inner product on RN×N
S ×RN×N

S . For A = (aij), B =
(bij) ∈ RN×N

S

A •B := tr(A ·B) =
N∑

i,j=1

aijbij,

which is simply the scalar product of the “flattenings” of the matrices.
Next we define different versions of the semi-definite programming prob-

lem:

Semi-definite feasibility Given Ai ∈ RN×N
S for i = 1, . . .M and b =

[b1, . . . , bM ]T ∈ RM . The primal semidefinite feasibility problem is to
find Q ∈ RN×N

S subject to{
Ai •Q = bi i = 1, . . . ,M,

Q � 0.
(Pr-Feas)
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The dual semidefinite feasibility problem is to find w = [w1, . . . , wM ]T ∈
RM such that {

bTw < 0∑M
i=1wiAi � 0.

(Du-Feas)

Semi-definite optimization Given C ∈ RN×N
S , Ai ∈ RN×N

S for i = 1, . . .M
and b = [b1, . . . , bM ]T ∈ RM . The primal semi-definite optimization
problem is to find 

supQ∈RN×N
S

C •Q
Ai •Q = bi i = 1, . . . ,M,

Q � 0.

(Pr-SDP)

The dual semidefinite optimization problem is to find{
infw∈RM bTw

C +
∑M

i=1wiAi � 0.
(Du-SDP)

Continuation of Example 1.3: The SOS decomposition for f(x) = 2x4 +2x3−
x2 + 5 is a primal semidefinite feasibility problem, where N = 3, M = 5, and the
equations in (1) can be described using the trace product of symmetric matrices.
For example the equation q22 + 2q13 = −1 is 0 0 1

0 1 0
1 0 0

 •
 q11 q12 q13

q12 q22 q23

q13 q23 q33

 = −1.

So the coefficient matrices of the 5 equations in (1) are

A1 =

 0 0 0
0 0 0
0 0 1

 , A2 =

 0 0 0
0 0 1
0 1 0

 , A3 =

 0 0 1
0 1 0
1 0 0


A4 =

 0 1 0
1 0 0
0 0 0

 , A5 =

 1 0 0
0 0 0
0 0 0

 .
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The corresponding dual feasibility problem is to find w = [w1, w2, w3, w4, w5] ∈
R5 such that

bTw = 2w1 + 2w2 − w3 + 5w5 < 0

W := A∗(w) =

 w5 w4 w3

w4 w3 w2

w3 w2 w1

 � 0.

Note that W has a Hankel structure, and if w = [x4, x3, x2, x, 1] then

W =

 1
x
x2

 · [ 1 x x2
]
.

Such matrices in the multivariate case are called moment matrices, which we will
define below. Also note that

tr(Q ·W ) = q33w1 + 2q23w2 + (q22 + 2q13)w3 + 2q12w4 + q11w5

so if Q satisfies the linear equations above then

tr(Q ·W ) = 2w1 + 2w2 − w3 + 5w5 = bTw.

Thus, if W and Q both positive semi-definite matrices, then their product is also
positive semi-definite, so its trace is ≥ 0. This shows that the primal and the dual
problems cannot be feasible in the same time.

The classical Farkas Lemma for linear programming connect the feasi-
bility of the primal and dual programs. For semi-definite programming an
extra condition is needed:

Theorem 1.5 (Farkas Lemma for SDP). Let Ai ∈ RN×N
S for i = 1, . . .M

and b ∈ RM . Suppose there exists a vector w ∈ RM such that

M∑
i=1

wiAi � 0, (2)

i.e. strictly positive definite. Then exactly one of the following is true:

1. There exists Q ∈ RN×N
S such that Ai • Q = bi for i = 1, . . . ,M and

Q � 0.
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2. There exists w ∈ Rm such that btw < 0 and
∑M

i=1wiAi � 0.

Note that one direction of the Farkas Lemma for SDP’s is always true,
even without condition (2), namely that at most one of statements are true.
The following example demonstrates that the extra condition in (2) is needed
to assure that exactly one of the statements is true:

Example 1.6: Consider the following Primal Semidefinite Feasibility Problem:

Q =

 q11 q12 q13

q12 q22 q23

q13 q23 q33

 � 0

q33 − q11 = 0, −q22 = 0, 2q12 = −1.

This problem is infeasible, since for positive semi-definite matrices q22 = 0 implies
that q12 = 0.
The corresponding Dual problem is to find w = [w1, w2, w3] ∈ R3 such that

W =

 −w1 w3 0
w3 −w2 0
0 0 w1

 � 0

−w3 < 0.

This problem is also infeasible, since for any feasible solutions we have w1 = 0,
which implies that w3 = 0. Note that in this case there is no w such that W � 0,
so (2) is not satisfied.

1.2 Deciding if f is a sum of squares

In this subsection we formally express the decision problem of whether f ∈
R[x1, . . . , xn] of degree 2d is a sum of squares as a Primal semi-definite fea-
sibility problem, state its dual, and prove that condition (2) in the Farkas
Lemma for SDP’s is always satisfied for SOS problem.

To understand better the structure of dual problem, we need to define
moment matrices:

Definition 1.7. Let y = [yα : α ∈ Nn|α| ≤ 2d] ∈ R(2d+n
n ), or a vector o

indeterminates, where the entries are indexed by exponent vectors of mono-
mials in n variables of degree at most 2d. The degree d moment matrix of y

6



is a
(
d+n
n

)
×
(
d+n
n

)
matrix with rows and column corresponding to monomials

in n variables of degree at most d, and defined as

Md(y) = [yα+β]|α|,|β|≤d .

Example 1.8: If n = 1 then Md(y) is a Hankel matrix, for example

M3(y) =


y0 y1 y2 y3

y1 y2 y3 y4

y2 y3 y4 y5

y3 y4 y5 y6

 .

For n = 2 and d = 2 the rows and columns correspond to the monomials [1, x1, x2, x
2
1, x1x2, x

2
2],

so the moment matrix is

M2(y) =



y0,0 y1,0 y0,1 y2,0 y1,1 y0,2

y1,0 y2,0 y1,1 y3,0 y2,1 y1,2

y0,1 y1,1 y0,2 y2,1 y1,2 y0,3

y2,0 y3,0 y2,1 y4,0 y3,1 y2,2

y1,1 y2,1 y1,2 y3,1 y2,2 y2,3

y0,2 y1,2 y0,3 y2,2 y1,3 y0,4

 .

The following theorem expresses the decision problem wether f is SOS as
a semi-definite feasibility problem.

Theorem 1.9. Let f =
∑
|α|≤2d fαx

α ∈ R[x1, . . . , xn] of total degree 2d.

1. f is a sum of squares polynomial if and only if the following Primal
semi-definite problem is feasible:

Q ∈ R(d+n
n )×(d+n

n )
S , Q � 0

Bα •Q = fα ∀α ∈ Nn, |α| ≤ 2d,

where Bα ∈ R(d+n
n )×(d+n

n )
S has 1 in entries that appear in the coefficients

of xα in the polynomial X · Q · XT with X = [xγ : |γ| ≤ d]T , and 0
otherwise.

7



2. f is not a sum of squares polynomial if and only if following Dual
semi-definite problem is feasible:

y = [yα : |α| ≤ 2d] ∈ R(2d+n
n )∑

|α|≤2d

fαyα < 0

Md(y) � 0.

Proof. The theorem follows from the same construction as in Example 1.3
and the Farkas Lemma for SDP’s. The only thing we need to show is that
condition (2) is always satisfied for moment matrices, i.e. there exist moment
matrices for any n and d that are strictly positive definite. This is true, since
for any d there exists

(
d+n
n

)
points z1, . . . , z(d+n

n ) ∈ Rn such that the square

Vandermonde matrix V := [zαi ]i,α (with rows corresponding to the points and
columns corresponding to monomials of degree at most d) is non-singular.
Then Md := V T ·V is a moment matrix which is strictly positive definite.

1.3 General Hilbert-Artin representation

As we have seen at the beginning of the section, not all positive definite poly-
nomials are SOS. The following theorem gives a more general representation
of positive definite polynomials. This representation is called Hilbert-Artin
representation in [1]. A version of this theorem was proved by Artin in 1927.

Theorem 1.10. Let f ∈ R[x1, . . . , xn] and suppose that f(x) ≥ 0 for all
x ∈ Rn. Then there exist p1, . . . , ps, q1, . . . , qt ∈ R[x1, . . . , xn], not all zero,
such that (

t∑
i=1

q2
i

)
f =

s∑
j=1

p2
i . (3)

In other words, f is a ratio of two sum of squares polynomials.

Notice that if f is SOS, then t = 1, q1 = 1 will give the Hilbert-Artin
representation of f . However, if f is not an SOS, we may need higher degree
qi polynomials. For example, the Motzkin polynomial if Example 1.2 has a
Hilbert-Artin representation with linear qi’s (see [1]).
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Since we do not have an a priori bound for the degree of the polynomials
qi, one can increment this degree, set up the corresponding semidefinite fea-
sibility programs as described below, and test whether they are feasible or
not.

We use the following notation:

e := max
i

deg qi, d :=

⌈
e+

deg f

2

⌉
.

Note that deg pi ≤ d and both sides of (4) has degrees 2d.
In order to translate the Hilbert-Artin representation to a semi-definite

feasibility problem, we need to define the so called shifted moment matrices:

Definition 1.11. Let f ∈ R[x1, . . . , xn] and e, d as above. Let y = [yα :
α ∈ Nn, |α| ≤ 2d] be a vector of indeterminates. Then the shifted moment
matrix of degree e is defined by

Me(fy) =
[
xα+βf |y

]
|α|,|β|≤e ,

where we use the notation that for any polynomial g =
∑

α∈Nn gαx
α ∈

R[x1, . . . , xn]

g|y :=
∑
α∈Nn

gαyα

the linearization of of g.

Example 1.12: For n = 2, e = 1 and f = x2
1 + x2

2 − 1 we have that

M1(fy) =

 y2,0 + y0,2 − y0,0 y3,0 + y1,2 − y1,0 y2,1 + y0,3 − y0,1

y3,0 + y1,2 − y1,0 y4,0 + y2,2 − y2,0 y3,1 + y1,3 − y1,1

y2,1 + y0,3 − y0,1 y3,1 + y1,3 − y1,1 y2,2 + y0,4 − y0,2

 .

Now we are ready express the Hilbert-Artin representation for a fixed de-
gree e as a Primal semidefinite feasibility problem, and state its dual as well.

Theorem 1.13. Let f ∈ R[x1, . . . , xn] and fix e ≥ 0. Let d =
⌈
e+ deg f

2

⌉
as

above.
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1. There exist p1, . . . , ps, q1, . . . , qt ∈ R[x1, . . . , xn], not all zero, such that(
t∑
i=1

q2
i

)
f =

s∑
j=1

p2
i and deg qi ≤ e (4)

if and only if the following primal semidefinite problem is feasible:

P ∈ R(d+n
n )×(d+n

n )
S , Q ∈ R(e+n

n )×(e+n
n )

S ,

P � 0, Q � 0

coeffsx(XdPXT
d − f(x) ·XeQXT

e ) = 0

tr(Q) = 1

where Xt = [xα : α ∈ Nn, |α| ≤ t] and coeffx(q) denotes the vector
of coefficients of q ∈ R[x1, . . . , xn]. Note that XdPXT

d − f(x) ·XeQXT
e

is a polynomial, and its coefficients in x are linear in the entries of P
and Q.

2. f has no Hilbert-Artin representation with deg qi ≤ e if and only if the
following dual semidefinite program is feasible:

y = [yα : α ∈ Nn, |α| ≤ 2d] ∈ R(2d+n
n ), t ∈ R

Md(y) � 0, Me(−fy) + tI � 0,

t < 0,

where I is the
(
e+n
n

)
×
(
e+n
n

)
identity matrix.

Proof. The proof is similar to the proof of Theorem 1.9, and it can be found
in [1]. A key part is to construct y such that Md(y) � 0, Me(−fy) + tI � 0,
so that we can apply Farkas Lemma.

Continuation of Example 1.2: For the Motzkin polynomial

M(x, y) = x4y2 + x2y4 + 1− 3x2y2

to get a certificate that it is not an SOS, one have to find an exact solution for the
dual semidefinite program for e = 0. Note that M0(−fy) = f |y is a 1× 1 matrix,
so M0(−fy) + tI � 0, t < 0 is equivalent to f |y < 0 which appears in the dual
problem in Theorem 1.9.
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In [1] they give the following certificate. First note that we can exploit the
sparsity of the Motzkin polynomial, and it is sufficient to consider the following
monomials X = [1, xy, x2y, xy2] in the primal program, which gives for the dual
the unknown vector

y = [y0,0, y1,1, y1,2, y2,2, y3,2, y2,3, y4,2, y3,3, y2,4].

Then the corresponding moment matrix is

MX(y) =


y0,0 y1,1 y2,1 y1,2

y1,1 y2,2 y3,2 y2,3

y2,1 y3,2 y4,2 y3,3

y1,2 y2,3 y3,3 y2,4

 .

Also
f |y = y4,2 + y2,4 + y0,0 − 3y2,2.

A feasible solution is

y∗ = [y0,0 = y1,1 = y1,2 = 0, y2,2 = 1, y3,2 = y2,3 = y4,2 = y3,3 = y2,4 = 0],

i.e.

MX(y∗) =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 � 0,

f |y∗ = −3 · 1 < 0.

Note that this shows that any polynomial with the same support as the Motzkin
polynomial is not an SOS if the coefficient of x2y2 is negative.

For e = 1 we can solve the primal semi-definite feasibility problem in Theorem
1.13. To lower the size of the semi-definite program, one can start to use a subset
of the monomials of degree e = 1, and in this case X1 = [1, x] will give a feasible
solution. Again, using the sparsity of M(x, y) it is sufficient to consider the vector
of monomials X4 = [1, x, xy, x2y, xy2, x3y, x2y2]. That leads to a 2× 2 matrix for
Q and a 7× 7 matrix for P . In [2] they give the following soluteion:

(1 + x2) ·M(x, y) = (1− x2y2)2 + (xy − x3y)2 + (x− xy2)2.
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