
Lecture Notes 4.
MA 722

1 Bézout’s Theorem

We follow the approach of [BCSS98, Chapter 10].

Bézout’s theorem is the n-dimensional generalization of the univariate
Fundamental Theorem of Algebra (FTA). Before we state the theorem, we
need to define projective spaces. First we give motivations by revisiting the
univariate case.

1.1 Motivation: Fundamental Theorem of Algebra

Let f(z) = az2+bz+c. Then f has two roots in C, counted with multiplicity,
which are

ξ1 =
−b+

√
b2 − 4ac

2a
and ξ2 =

−b−
√
b2 − 4ac

2a
.

What happens when a→ 0? It is easy to check that

lim
a→0

ξ1 = −c
b

and lim
a→0±

ξ1 = ±∞.

In other word, ξ2 “escapes” to infinity. In order to make the roots continuous
functions of the coefficients, we will “compactify” C, by introducing the
projective space denoted by P1

C or by P(C2). There are several ways to define
P1
C. For example,

P1
C := {L ⊂ C2 | L is a line through the origin}

or by the factor set

P1
C :=

C2 − {0}
{(ζ, µ)− (λζ, λµ) | ζ, µ, λ ∈ C, (ζ, µ) 6= 0, λ 6= 0}

.

Usually the points L ∈ P1
C are denoted by (ζ : µ) where (ζ, µ) 6= 0 is any

point on the line L. Then we can associate the points (ζ : 1) with C and the
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point (1 : 0) with infinity. Informally, a sequence in C converging to infinity
will correspond to a sequence in P1

C with the limit (1 : 0).
In order to make polynomials well defined on the projective space, we need

to homogenize them. For f = adz
d + · · ·+ a0 we define its homogenization

fh(z, w) := adz
d + ad−1z

d−1w + · · ·+ a1zw
d−1 + a0w

d.

Then fh(ζ, µ) = 0 if and only if fh(λζ, λµ) = 0 for all λ 6= 0, thus roots of
homogeneous polynomials are points in P1

C.
Roots of f and fh are closely related. On one hand, if f(ξ) = 0 for some

ξ ∈ C then fh(ξ, 1) = 0. On the other hand, if fh(ζ, µ) = 0, then we have
two cases:
(1) if µ 6= 0 then f( ζ

µ
) = 0.

(2) if µ = 0 then ad = 0, and the root “escaped to infinity”.
In order to state a more sophisticated version of the FTA, we need to de-

fine multiplicity. The following simple definition only works in the univariate
case, however we will define multiplicity more generally in Theorem 1.11.

Definition 1.1. We say that a root (ζ : µ) ∈ P1
C of fh has multiplicity m if

fh(z, w) = (µz − ζw)mgh(z, w)

and gh(ζ, µ) 6= 0.

Theorem 1.2 (FTA version 2.). Let fh(z, w) be a non-zero homogeneous
polynomial of degree d. Then fh has d roots in P1

C, counted with multiplicity.

1.2 n-Dimensional Projective Space

Definition 1.3. The n-dimensional projective space, denoted by P(Cn+1)
or PnC, is the set of one dimensional subspaces of Cn+1 (i.e. lines through
the origin). We denote the point L ∈ P(Cn+1) by (x0 : · · · : xn), where
(x0, . . . , xn) 6= 0 ∈ Cn+1 is any point on the line L. Similarly, for any vector
space W , we can define P(W ) the projective space of dimension dim(W )−1.

First note that P(Cn+1) is not a vector space: addition of points is not
well defined. We can study the structure of P(Cn+1) by looking at its tangent
spaces and by defining metrics on it.
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Just as in the univariate case, Cn can be embedded into P(Cn+1) by the
map

(ξ1, . . . , ξn) 7→ (1 : ξ1 : · · · : ξn).

The set of points in P(Cn+1) − Cn = {(0 : ξ1 : · · · : ξn)} are the “points at
infinity”, and can be considered as Pn−1C .

We can also define the map

Q : Cn+1 → P(Cn+1)

where Q(w) is the point L ∈ P(Cn+1) such that w lies on the line L ⊂ Cn+1.
Note that Q−1(L) is the line L ⊂ Cn+1.

Let
S1 := {w ∈ Cn+1 : ‖w‖ = 1}

be the unit sphere. Here ‖w‖2 =
∑n

i=0wiwi. We define the restriction of Q
to S1 by

ρ : S1 → P(Cn+1), w 7→ L if w ∈ L.
Here

ρ−1(L) = S1 ∩ L = {tw | t ∈ C, |t| = 1}
is a unit circle in C – our intuition from R2 does not work here!

1.3 Homogeneous Systems

Define the vector space

Hd := {f ∈ C[x0, . . . , xn] | f is homogeneous of degree d}.

If f ∈ Hd then f(ξ0, . . . , ξn) = 0 if and only if f(λξ0, . . . , λξn) = 0 for all
λ 6= 0 in C. Thus, the roots of polynomials in Hd are elements of P(Cn+1).

Let (d) := (d1, . . . , dk) ∈ Nk and define the space of polynomial systems

H(d) := Hd1×· · ·×Hdk = {f = (f1, . . . , fk) | fi is homogeneous of degree di}.

Definition 1.4. The solution variety is defined by

V := {(f, x) ∈ (H(d) − {0})× P(Cn+1) | f(x) = 0}.

Theorem 1.5. Let (d) := (d1, . . . , dk) ∈ Nk. Then the solution variety V is
a smooth and connected subvariety of H(d) × P(Cn+1) of codimension k.
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Proof. Here we give an outline of the proof for

V ′ := {(f, x) ∈ (H(d) − {0})× (Cn+1 − {0}) | f(x) = 0}

instead of V .
To prove that V ′ is smooth and has codimension k in H(d)×Cn+1 we first

note that the tangent space of V ′ at (f, x) ∈ V ′ is given by

T(f,x) = {(h,w) ∈ H(d) × Cn+1 | h(x) +Df(x)w = 0},

where Df(x) is the Jacobian matrix of f . Then codimT(f,x) = k, since the
linear map

φ : H(d) × Cn+1 → Ck, (h,w) 7→ h(x) +Df(x)w

is surjective, and T(f,x) = ker(φ).
To prove that V ′ is connected, for any fixed x ∈ Cn+1 − V (x0), we define

the set
V ′x := {(f, x) ∈ V ′}.

Since V ′x is a vector space, it is connected. Now let x, x′ ∈ Cn+1−V (x0). We
will connect V ′x and V ′x′ by a path. Fix (f, x) ∈ V ′x and define the path in V ′

by

(ft, xt) :=

(
f − f(p(t))

p(t)0
x
deg(f)
0 , p(t)

)
for 0 ≤ t ≤ 1

where p(t) : [0, 1] → Cn+1 − V (x0) is any path connecting x and x′ within
Cn+1 − V (x0) with p(0) = x and p(1) = x′ (in the proof of Corollary 1.9
we show that this is possible). Thus, we get a path P : [0, 1] → V with
P (t) = (ft, xt) such that P (0) = (f0, x0) = (f, x) ∈ V ′x and P (1) = (f1, x1) =
(f ′, x′) ∈ V ′x′ .

From now on we will assume that k = n, i.e. H(d) = Hd1 × · · · ×Hdn and
f = (f1, . . . , fn).

Definition 1.6. The critical variety Σ′ ⊂ V is defined

Σ′ := {(f, x) | f(x) = 0, and rank(Df(x)) < n}

where Df(x) is the Jacobian matrix of f . Define the projection

π1 : H(d) × P(Cn+1)→ H(d).
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The discriminant variety is defined

Σ := π1(Σ
′) ⊂ H(d).

Lemma 1.7. Σ′ and Σ are Zariski closed subvarieties of V and H(d), respec-
tively, i.e. they are defined by polynomial equations.

Proof. Σ′ is Zariski closed, since it is defined by f(x) = 0 and det(M) = 0
for all n× n submatrices M of Df(x). These are algebraic equations in the
coefficients of f and in the coordinates of x.

Σ is Zariski closed because of the Projective Extension Theorem, which
states that for any projection

π : Cm × P(Cn+1)→ Cm

if Z ⊂ Cm × P(Cn+1) is Zariski closed then π(Z) is also Zariski closed. (We
will not prove this theorem, see the proof in [CLO97, Chapter 8, §5, Theorem
6].)

Remark 1.8. Note that the previous lemma and the Projective Extension
Theorem is not true if we change P(Cn+1) to Cn. For example, consider
π1 : H2 × C→ H2, and

Σ′ = {(a0, a1, a2, x) | a2x2 + a1x+ a0 = 2a2x+ a1 = 0}.

Clearly, Σ′ is Zariski closed, but

π1(Σ
′) = Σ− {a2 = 0}

is not Zariski closed. Here Σ = {(a0, a1, a2)|a21 − 4a2a0} is the discriminant
variety if we use P(C2).

Corollary 1.9. Let B ⊂ H(d) − {0} be an open ball, i.e.

B = B(f, δ) = {h ∈ H(d) − {0} | ‖h− f‖ < δ}

for some f ∈ H(d) − {0} and δ > 0. Then B − Σ is connected.
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Proof. Note first that the corollary is counter intuitive, since it is not true in
R2.

We will prove the corollary for any ball B ⊂ Cm and for any Zariski closed
subset Σ ⊂ Cm. Let L := {tx | t ∈ C} be a line in Cm for a fixed x ∈ B.
Since L ∼= C, therefore L∩Σ is a finite set, thus L∩B∩Σ is also a finite set.
Thus (L ∩B)− Σ is a disc in C minus a finite set, which is connected.

Now we have all the ingredients to prove Bézout’s theorem, which will be
stated in the next subsection.

1.4 Bézout’s Theorem

We give two versions of the theorem.

Theorem 1.10 (Bézout’s Theorem). Let (d) = (d1, . . . , dn) and f ∈ H(d) −
Σ− {0}. Define

D :=
n∏
i=1

di,

the so called Bézout’s number. Then f has D zeroes in P(Cn+1).

Proof. SinceH(d)−Σ−{0} is connected by Corollary 1.9, the Inverse Function

Theorem (IFT) implies that any two systems f and f̃ in H(d) − Σ − {0}
have the same number of roots. More precisely, consider the projection π :
V −Σ′ → H(d)−Σ. For any path {ft : t ∈ [0, 1]} ⊂ H(d)−Σ connecting f and

f̃ , by IFT there exist D distinct paths {(ft, ξi,t) : t ∈ [0, 1]} ⊂ V −Σ′ for i =
1, . . . ,D, such that ξ1,0, . . . , ξD,0 are the distinct roots of f and ξ1,1, . . . , ξD,1
are the roots of f̃ . Moreover, the system

f ∗ :=
(
xd11 − xd10 , xd22 − xd20 , . . . , xdnn − xdn0

)
is in H(d) − Σ− {0} and has D roots.

The second version of Bézout’s Theorem considers systems in Σ as well.
Note that systems in Σ not only have roots with multiplicities, but may also
have infinitely many roots as well. The theorem deals with this situation,
and also defines a notion of multiplicity which works in the most general case.
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Theorem 1.11 (Bézout’s Theorem - Extended to Σ). Let f ∈ H(d)−{0}, and
D as in Theorem 1.10. Let Zj := Zj(f) for j = 1, . . . , k be the connected
components of the set of zeroes of f in P(Cn+1). Then we can assign a
multiplicity m(Zj) to each Zj which satisfies the following properties:

(a) m(Zj) ≥ 1;

(b)
∑k

j=1m(Zj) = D;

(c) m(Zj) = 1 if Zj is a non-degenerate isolated zero, i.e. if Zj = {x} and
(f, x) ∈ V − Σ′;

(d) There exist Uj ⊂ P(Cn+1) open neighborhood of Zj for j = 1, . . . k, and
an open ball B ⊂ H(d)−{0} around f such that for any g ∈ B, the set

of roots Z(g) of g satisfies Z(g) ⊂
⋃k
i=1 Uj, and for all j = 1, . . . , k∑

Zt(g)⊆Uj

m(Zt(g)) = m(Zj).

Proof. First we prove that Z(f) 6= ∅. SinceH(d)−Σ−{0} is everywhere dense,
there exist a sequence f (1), f (2), . . . inH(d)−Σ−{0} such that limi→∞ f

(i) = f .
By the Inverse Function Theorem and the compactness of P(Cn+1) we can
define (f (i), ξ(i)) ∈ V − Σ′ and a limit point (f, ξ) ∈ V . Thus, ξ ∈ Z(f).

Next we define the multiplicity of the connected components Zj. Let Uj
be disjoint open neighborhoods of Zj for j = 1, . . . , k. By the continuity of
the roots in terms of the coefficients, there exists a ball B around f such that
for any g ∈ B Z(g) ⊂

⋃k
j=1 Uj. Fix g ∈ B − Σ and define m(Zj) to be the

number of zeroes of g in Uj. This definition is independent of the choice of
g ∈ B − Σ, since B − Σ is connected by Corollary 1.9. Also, the properties
(b), (c) and (d) of the multiplicity follow directly from the definition.

To prove (a), we define

Vj := {(g, z) ∈ V | g ∈ B, z ∈ Uj}

for j = 1, . . . k. Since {f} × Zj ⊂ Vj, Vj is a non-empty open subset of V .
Therefore, Vj 6⊆ Σ′, since Σ′ is Zariski closed. Thus, there exists (gj, z) ∈
Vj−Σ′ such that gj ∈ B−Σ, z ∈ Uj and gj(z) = 0. Therefore m(Zj) ≥ 1.
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2 Multipolynomial Resultants

We follow the approach of [CLO98, Chapter 3].
Given n+ 1 homogeneous polynomials

f0(x0, . . . , xn), . . . , fn(x0, . . . , xn) ∈ C[x0, . . . , xn]

in n + 1 variables of total degrees d0, . . . , dn. We are considering their com-
mon roots in Cn+1 − {0}, or equivalently in the projective space PnC. Since
(f0, . . . , fn) forms an over-constrained system of equations over PnC, usually
no solution exists. As we will see later, the set of systems which do have
common roots in PnC form a co-dimension one hypersurface in the vector
space

H(d) = {(f0, . . . , fn) ∈ C[x0, . . . , xn]n : deg(fi) = di}

where (d) = (d0, . . . , dn).

Example 2.1. For d0 = · · · = dn = 1 we have the homogeneous linear
system

f0 = c0,0x0 + · · ·+ c0,nxn
...

...

fn = cn,0x0 + · · ·+ cn,nxn.

This system has a solution in Cn+1 − {0} if and only if

det(ci,j) = 0.

This is clearly a one co-dimensional hypersurface in H(1,...,1).

In the general case, in order to define the equation of the hypersurface
defining the systems with common roots, we first have to introduce “universal
polynomials” of given degree.

Definition 2.2. The polynomials

Fi =
∑
|α|=di

ui,αx
α i = 0, . . . , n,
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with coefficients ui,α which are parameters, are called universal polynomials.
Here for α = (α0, . . . , αn) ∈ Nn+1 we denote

|α| =
n∑
i=0

αi and xα = xα0
0 · · ·xαnn .

Note that
Fi ∈ Z[ui,α : |α| = di][x0, . . . , xn].

For any substitution of the parameters ui,α by complex numbers, the resulting
homogeneous polynomials F̃0, . . . , F̃n ∈ H(d) are called the specialization of
the universal polynomials.

Theorem 2.3 (Existence of Resultant). Fix (d) = (d0, . . . , dn). Then there
exists a unique polynomial

Res(d) ∈ Z[ui,α : i = 0, . . . , n]

with the following properties:

(i) If F̃0, . . . , F̃n ∈ C[x0, . . . , xn] are specializations of the universal poly-
nomials of degrees d0, . . . , dn, then they have a common root in PnC if
and only if

Res(d)(F̃0, . . . , F̃n) = 0.

(ii) Res(d)(x
d0
0 , . . . , x

dn
n ) = 1.

(iii) Res(d) is irreducible in C[ui,α].

Outline of Proof. Let V ⊂ H(d) × PnC be the solution variety, i.e.

V = {(F̃ , x) : F̃ (x) = 0}.

Let π : H(d) × PnC → H(d) be the projection, so that

π(V ) = {F̃ = (F̃0, . . . , F̃n) : ∃x ∈ PnC, F̃ (x) = 0} ⊂ H(d).

What we are going to prove is that π(V ) is defined by a single irreducible
equation Res(d) = 0. To prove this we need to show that π(V ) is Zariski
closed (i.e. defined by polynomials), it has co-dimension one in H(d), and it
is irreducible.
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To prove that π(V ) is Zariski closed, we use the Projective Extension
Theorem in [CLO97, Chapter 8, §5, Theorem 6], which states that for a
projection

π : Cm × PnC → Cm

if Z ⊂ Cm × PnC is Zariski closed then π(Z) is also Zariski closed. We will
not prove this theorem.

To prove that π(V ) has codimension one inH(d), denote byM := dimCH(d).
Then dimCH(d) × PnC = M + n. Since V is defined by the n + 1 equation
F0, . . . , Fn ∈ Z[ui,α][x0, . . . , xn], and each equation drops the dimension by
one, we have that

dimC V = M + n− (n+ 1) = M − 1.

Note that π|V is one-to-one almost everywhere on V , except a lower di-
mensional subvariety, since if F̃0, . . . , F̃n do have a common root in PnC, it
is “usually” unique. Therefore π|V has also dimension M − 1, i.e. it has
co-dimension one.

To prove that π(V ) is irreducible, we first show that V is irreducible. This
follows from the fact that using the second projection π̃ : H(d) × PnC → PnC,
the restriction π̃|V : V → PnC is surjective and all inverse images of points are
linear subspaces, so they are irreducible. This implies (without proof here)
that V is an irreducible variety. Then a standard argument shows that π(V )
is also irreducible.

The uniqueness of Res(d) follows from properties (ii) and (iii).

Definition 2.4. Res(d)(F0, . . . , Fn) ∈ Z[ui,α] is called the projective resultant
for degrees (d) = (d0, . . . , dn).

We give two examples. The first one is the n = 1 case, and we give
the well-known Sylvester matrix construction, and also the Bézout matrix
construction for the resultant.

Example 2.5. Let

F0 := u0,0x
d0
0 + u0,1x

d0−1
0 x1 + · · ·+ u0,d0x

d0
1

F1 := u1,0x
d1
0 + u1,1x

d1−1
0 x1 + · · ·+ u1,d0x

d1
1

be the universal polynomials for n = 1 of degrees (d) = (d0, d1). To compute
the projective resultant Res(d0,d1) we define a matrix called the Sylvester
matrix, such that its determinant will be the resultant.
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Denote by

Hd := {f ∈ C[x0, x1] : f homogeneous , deg(f) = d}

For a specialization F̃0, F̃1, the Sylvester matrix S(F̃0, F̃1) is the transpose of
the matrix of the linear map

sylF̃0,F̃1
: Hd1−1 ×Hd0−1 → Hd0+d1−1

(p, q) 7→ pF̃0 + qF̃1

written in the monomial basis {xd0, xd−10 x1, . . . , x
d
1} of Hd. In other words,

for the universal polynomials F0, F1 the Sylvester matrix S(F0, F1) has rows
corresponding to the coefficients of the polynomials

xd1−10 F0, x
d1−2
0 x1F0, . . . , x

d1−1
1 F0, x

d0−1
0 F1, x

d0−2
0 x1F1, . . . , x

d0−1
1 F1

and in matrix form we get the following (d0 + d1)× (d0 + d1) matrix:

S(F0, F1) =

u0,0 . . . u0,d0
. . . . . . d1

u0,0 . . . u0,d0
u1,0 . . . u1,d1

. . . . . . d0
u1,0 . . . u1,d1

Clearly, if a specialization F̃0, F̃1 has a common roots (ξ0 : ξ1) ∈ P1
C then the

vector
v := [ ξd0+d1−10 , ξd0+d1−20 ξ1, . . . , ξ

d0+d1−1
1 ]

satisfy S(F̃0, F̃1)v
T = 0, so the matrix S(F̃0, F̃1) has a non-trivial kernel, thus

its determinant is zero. This implies that Res(d0,d1) divides det(S(F0, F1)).
One can also prove the other direction, so that

Res(d0,d1) = det(S(F0, F1)).

Another matrix construction for the resultant Res(d0,d1) is the Bézout ma-
trix. Consider the new variables y0, y1 and define the Bezoutian to be the
polynomial in x0, x1, y0, y1

Bez(x0, x1, y0, y1) :=
F0(x0, x1)F1(y0, y1)− F1(x0, x1)F0(y0, y1)

x0y1 − y0x1
.
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Note that the Bezoutian is a polynomial, since the denominator divides the
numerator. To see this we write F0(x0, x1)F1(y0, y1)− F1(x0, x1)F0(y0, y1) in
the form

d0∑
t=0

d1∑
s=0

u0,tu1,s(x
d0−t
0 xt1y

d1−s
0 ys1 − y

d0−t
0 yt1x

d1−s
0 xs1).

If s = t then the terms with coefficients u0,tu1,s and u0,su1,t cancel each other.
Similarly for d0− t = d1− s. Then assuming for example that d0− t < d1− s
and t > s we have that

xd0−t0 xt1y
d1−s
0 ys1−y

d0−t
0 yt1x

d1−s
0 xs1 = xd0−t0 xs1y

d0−t
0 ys1(x

t−s
1 yd1−s−d0+t0 −yt−s1 xd1−s−d0+t0 ).

It is easy to see that if a, b ≥ 1 then

xa1y
b
0 − ya1xb0 = (x1y0 − y1x0)(xa−11 yb−10 + xa−21 yb−20 y1x0 + · · ·+ ya−11 xb−10 ).

This implies that the Bezoutian is a polynomial which is homogeneous in
both pairs of the variables (x0, x1) and (y0, y1) separately, and have degree
d := max(d0, d1)− 1 in both. Now write

Bez(x0, x1, y0, y1) =
d∑

a,b=0

ba,bx
d−a
0 xa1, y

d−b
0 yb1

where ba,b ∈ Z[ui,j]. Then the Bezoutian matrix is the symmetric (d + 1) ×
(d+ 1) matrix defined as

B(F0, F1) := [ba,b]
d
a,b=0

For example, for d0 = d1 = 3 we have that B(F0, F1) is equal to
u0,1u1,0 − u1,1u0,0 u0,2u1,0 − u1,2u0,0 u0,3u1,0 − u1,3u0,0

u0,2u1,0 − u1,2u0,0 −u1,3u0,0 + u0,3u1,0 + u0,2u1,1 − u1,2u0,1 −u1,3u0,1 + u0,3u1,1

u0,3u1,0 − u1,3u0,0 −u1,3u0,1 + u0,3u1,1 u0,3u1,2 − u1,3u0,2

 .

One can see that Bez(x0, x1, y0, y1) ∈ 〈F0(x0, x1), F1(x0, x1)〉, therefore each
of its coefficients as a polynomial in y0, y1 is in 〈F0(x0, x1), F1(x0, x1)〉. This
implies that if (ξ0 : ξ1) is a common root of F̃0, F̃1 then the vector w :=
(ξd−10 , ξd−20 ξ1, . . . , ξ

d−1
1 ) is in the nullspace ofB(F̃0, F̃1). Therefore det(B(F̃0, F̃1))

divides the resultant. The other direction is also true, so we have

det(B(F0, F1)) = Res(d0,d1).
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Our second example is for the case n = 2 and d0 = d1 = d2 = 2, i.e. for
three quadratic forms.

Example 2.6. Let

F0 = u0,1x
2 + u0,2y

2 + u0,3z
2 + u0,4xy + u0,5xz + u0,6yz,

F1 = u1,1x
2 + u1,2y

2 + u1,3z
2 + u1,4xy + u1,5xz + u1,6yz,

F0 = u2,1x
2 + u2,2y

2 + u2,3z
2 + u2,4xy + u2,5xz + u2,6yz.

Denote by J the Jacobian determinant

J := det


∂F0

∂x
∂F0

∂y
∂F0

∂z
∂F1

∂x
∂F1

∂y
∂F1

∂z
∂F2

∂x
∂F2

∂y
∂F2

∂z

 ,

which is a cubic homogeneous polynomial in x, y, z. This implies that the
partial derivatives of J are homogeneous of degree two, and can be written
as

∂J

∂x
= b0,1x

2 + b0,2y
2 + b0,3z

2 + b0,4xy + b0,5xz + b0,6yz,

∂J

∂y
= b1,1x

2 + b1,2y
2 + b1,3z

2 + b1,4xy + b1,5xz + b1,6yz,

∂J

∂z
= b2,1x

2 + b2,2y
2 + b2,3z

2 + b2,4xy + b2,5xz + b2,6yz.

Now consider the determinant of the 6× 6 matrix

M(F0, F1, F2) :=


u0,1 u0,2 u0,3 u0,4 u0,5 u0,6
u1,1 u1,2 u1,3 u1,4 u1,5 u1,6
u2,1 u2,2 u2,3 u2,4 u2,5 u2,6
b0,1 b0,2 b0,3 b0,4 b0,5 b0,6
b1,1 b1,2 b1,3 b1,4 b1,5 b1,6
b2,1 b2,2 b2,3 b2,4 b2,5 b2,6

 .

Note that by the Euler Identity we have that

x · J = 2 det

 F0
∂F0

∂y
∂F0

∂z

F1
∂F1

∂y
∂F1

∂z

F2
∂F2

∂y
∂F2

∂z

 ,
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and similarly one can prove that

xJ, yJ, zJ ∈ 〈F0, F1, F2〉.

Thus J vanishes at all nontrivial solutions of F1 = F2 = F3 = 0. Also, it
is easy to see that the partial derivatives of xJ, yJ, zJ by x, y, z vanish at
all nontrivial solutions of F1 = F2 = F3 = 0 (need to use the fact that the
derivative of a determinant is the sum of the determinants of the matrices
with the derivative of one of the columns). This also implies that the partial
derivatives of J vanish at all nontrivial solutions of F1 = F2 = F3 = 0. Thus,
if F1 = F2 = F3 = 0 has a solution (x0, y0, z0) not all zero, then the vector

v := (x20, y
2
0, z

2
0 , x0y0, x0z0, y0z0)

is in the kernel of M(F0, F1, F2). Thus det(M(F0, F1, F2)) = 0. This implies
that Res(2,2,2) divides det(M(F0, F1, F2)) = 0. In fact, it is possible to show
that

Res(2,2,2) =
−1

512
det(M(F0, F1, F2)).

The coefficient −1/512 comes from the value of det(M(x2, y2, z2)).

3 Properties of the Projective Resultant

Our first theorem gives the degree of the resultant as a polynomial in the
coefficients of Fi. We will not give a proof here, just check the correctness
for the examples discussed in the last section.

Theorem 3.1. Let F0, . . . , Fn be universal polynomials of degrees (d) =
(d0, . . . , dn), as defined in Definition 2.2. Fix 0 ≤ j ≤ n. Then Res(d) is
homogeneous in the variables {uj,α : |α| = dj} and

deguj,α(Res(d)) = d0 · · · dj−1dj+1 · · · dn.

Example 3.2. For the univariate case it is easy to check the claim using the
Sylvester matrix construction.
For the n = 2, d0 = d1 = d2 = 2 case we use the matrix construction
described in Example 2.6. To prove the theorem for Res(2,2,2) it is sufficient
to prove that

Res(2,2,2)(λ · F0, F1, F2) = λ4 · Res(2,2,2)(F0, F1, F2).

14



Consider the Jacobian determinant Jλ of the system (λ · F0, F1, F2). Then

Jλ = λ · J

since the first column of the Jacobian matrix is multiplied by λ. Similarly, the
partial derivatives of Jλ are λ times the partial derivatives of J . Therefore,
in the matrix M(λ · F0, F1, F2) the first row and each of the last three rows
are λ times the corresponding rows in M(F0, F1, F2). Therefore det(M(λ ·
F0, F1, F2)) = λ4 · det(M(F0, F1, F2)) as claimed.

The next theorem gives a product formula for the resultant, and is called
the Poisson Product Formula.

Theorem 3.3 (Poisson Product Formula). Let F0, . . . , Fn ⊂ k[x0, . . . , xn]
be homogeneous polynomials of degrees (d) = (d0, . . . , dn). Define for i =
0, . . . , n

F i(x0, . . . , xn−1) := Fi(x0, . . . , xn−1, 0),

fi(x0, . . . , xn−1) := Fi(x0, . . . , xn−1, 1).

Assume that
Res(d0,...,dn−1)(F 0, . . . , F n−1) 6= 0.

(Note that F i is a homogeneous polynomial in x0, . . . , xn−1 of degree di).
Then the following statements are true:

(i) If we define A := k[x0, . . . , xn−1]/〈f0, . . . fn−1〉, then

dimk(A) = d0 · · · dn−1.

(ii) If Mfn denotes the matrix of the multiplication map

µfn : A→ A; [q] 7→ [fnq]

then

Res(d)(F0, . . . , Fn) = Res(d0,...,dn−1)(F 0, . . . , F n−1)
dn det(Mfn).
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(iii) Let V := V (f0, . . . , fn−1) ⊂ k
n

where k is the algebraic closure of k.
Then

Res(d)(F0, . . . , Fn) = Res(d0,...,dn−1)(F 0, . . . , F n−1)
dn
∏
ξ∈V

fn(ξ)m(ξ),

where m(ξ) is the multiplicity of ξ in V .

Outline of Proof. To prove (i) we note that the condition that

Res(d0,...,dn−1)(F 0, . . . , F n−1) 6= 0

implies that no common roots of F0, . . . , Fn−1 has xn = 0, i.e. all roots of
F0, . . . , Fn−1 are in the affine subset {xn 6= 0} ∼= k

n
in Pn

k
. We use the

following lemma, without proof:

Lemma 3.4. If a projective variety V ∈ Pn
k

is contained in an affine subset

k
n ⊂ Pn

k
then V is finite.

This lemma implies that F0, . . . , Fn−1 has finitely many roots and they
correspond to roots of f0, . . . , fn−1. Thus by Bezout’s Theorem we have that

|V | = d0 · · · dn−1

counting multiplicities, which implies (i).
To prove (ii), first we claim that det(Mfn) satisfies the first property of the
definition of the projective resultant in Theorem 2.3, i.e. it vanishes if and
only if F0, . . . , Fn has a common root, provided that Res(F 0, . . . , F n−1) 6= 0.
This is true since the eigenvalues of Mfn are fn(ξ) for ξ ∈ V , and F0, . . . , Fn
have a common root if and only if one or more of the fn(ξ) are zero, using
the argument in the proof of (i).
Since det(Mfn) is a rational function of the coefficients of the Fi’s over k, this
implies that Res(d)(F0, . . . , Fn) divided by a power of Res(F 0, . . . , F n−1) must
be equal to det(Mfn). The power dn in the formula comes from comparing
degrees in the coefficients of F0, . . . , Fn.
To prove (iii) one needs to prove that the eigenvalue fn(ξ) of Mfn has the
same multiplicity as the multiplicity of ξ in V . We do not prove this.
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4 Computation of the Projective Resultant

The main idea to compute the resultant is the following: we consider each
monomial as a separate linear variable. Most often the n + 1 polynomi-
als have many more monomials than n + 1, so the resulting linear system
is under-constrained. In order to get a well-constrained linear system we
generate more polynomials by taking multiples of them, or by constructing
polynomials which vanish if the input polynomials do. This way we may
increase the degree, so there will be even more monomials, but hopefully
the number of new polynomials we gain is even larger. The construction of
Macaulay described in this section is the simplest such demonstration that
a well-constrained (square) linear system can be constructed this way.

Once we get a square linear system, we can argue that if this linear
system has no non-trivial solution, our original polynomials cannot have
non-trivial solutions either. This will imply that the determinant of the
coefficient matrix of the square linear system divides the resultant. We will
investigate how to find the “extraneous factor” to get the resultant form this
determinant.

Definition 4.1. Let F0, . . . , Fn be universal polynomials over Z[ui,α] of de-
grees (d) = (d0, . . . , dn). First define

D :=
n∑
i=0

(di − 1) + 1.

Next define sets of monomials that we will use to multiply Fi to generate
polynomials in the ideal 〈F0, . . . , Fn〉 of degree D:

S0 := {xα : |α| = D, xd00 |xα}
S1 := {xα : |α| = D, xd11 |xα, xd00 6 |xα}

...

Sn := {xα : |α| = D, xdnn |xα, xd00 , . . . , x
dn−1

n−1 6 |xα}

We will denote by Si the vector spaces over Q(ui,α) with bases Si. Also
denote by MD the vector space generated by the set of all monomials of
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degree D. Consider the linear map over Q(ui,α)

Φ : S0 ⊕ · · · ⊕ Sn → MD

(q0, . . . , qn) 7→
n∑
i=0

qi

xdii
Fi.

Then the Macaulay matrix M(F0, . . . Fn) is defined to be the transpose of the
matrix of Φ in the monomial basis. In other words, the rows of M(F0, . . . Fn)
correspond to the coefficients of the polynomials xα

x
di
i

Fi for all xα ∈ Si and

i = 0, . . . , n.

Example 4.2. For (d) = (1, 1, 2) and

F0 = a1x+a2y+a3z, F1 = b1x+b2y+b3z, F2 = c1x
2+c2y

2+c3z
2+c4xy+c5xz+c6yz

we have D = 2 and

S0 = {x2, xy, xz}
S1 := {y2, yz}
S2 := {z2}.

Therefore, the rows of the Macaulay matrix correspond to the coefficients of
the polynomials

xF0, yF0, zF0, yF1, zF1, F2.

Since the number of monomials of degree 2 equals 6, we get that

M(F0, F1, F2) =

x2 y2 z2 xy xz yz
a1 0 0 a2 a3 0 xF0

0 a2 0 a1 0 a3 yF0

0 0 a3 0 a1 a2 zF0

0 b2 0 b1 0 b3 yF1

0 0 b3 0 b1 b2 zF1

c1 c2 c3 c4 c5 c6 F2

. (1)

Proposition 4.3. The Macaulay matrix M(F0, . . . , Fn) is square.
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Proof. Let N :=
(
D+n
n

)
be the number of monomials in n + 1 variables of

degree D. It suffices to prove that

|S0|+ |S1|+ · · ·+ |Sn| = N.

First of all Si ∩ Sj = ∅ if i 6= j because if i < j then xdii divides the elements
in Si but it doesn’t divide the elements of Sj. Secondly,

⋃n
i=0 Si is all the

monomials of degree D, since for every xα of degree D =
∑n

i+0(di − 1) + 1
there must exist i such that αi > di, and for the smallest such i we have
xα ∈ Si.

Proposition 4.4. Denote by Rn = Rn(F0, . . . , Fn) the determinant of the
Macaulay matrix M(F0, . . . , Fn). Then

(i) Rn is a homogeneous polynomial in the set of coefficients of Fi and

degui,α Rn = |Si|.

(ii) Res(d) divides Rn in Z[ui,α], i.e. there exists an extraneous factor En ∈
Z[ui,α] such that

Rn = En · Res(d).

(iii) En does not depends on the coefficients of Fn.

Proof. Part (i) is clear from the Macaulay matrix construction.
To prove (ii), notice that the rows of M(F0, . . . , Fn) correspond to polynomi-
als in the ideal 〈F0, . . . , Fn〉. Therefore, for any specialized system F̃0, . . . , F̃n,
if ξ ∈ Pn is a common root of F̃0, . . . , F̃n then the vector v := [ξα]|α|=D is in

the kernel of M(F̃0, . . . , F̃n), thus Rn(F̃0, . . . , F̃n) = 0. Since the resultant is
an irreducible polynomial, this implies that Res(d) divides Rn.
To prove (iii) we will prove that

degun,α(Rn) = degun,α(Res(d)) = d0 · · · dn−1.

The second equation is proved in Theorem 3.1. To prove the first equation,
it suffices to prove that |Sn| = d0 · · · dn−1. This is true because if xα ∈ Sn for
some α = (α0, . . . , αn), then α0, . . . , αn−1 can be chosen arbitrarily as long as
0 ≤ αi ≤ di−1, and since

∑n−1
i=0 αi < D, therefore αn is uniquely determined

to be D −
∑n−1

i=0 αi.
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In the next corollary we give a method to compute the projective resultant
as the GCD of determinants of certain Macaulay matrices. First we need a
definition:

Definition 4.5. Since the Macaulay matrix construction depends on the
order of the variables, for i = 0, . . . , n we denote by Ri the determinant of
the Macaulay matrix with an ordering of the variables such that xi is the
last variable.

Corollary 4.6.
Res(d) = ± gcd(R0, . . . , Rn).

where the greatest common divisor is taken in the ring Z[ui,α].

Proof. On one hand the resultant divides the GCD. On the other hand, for
any fixed i, by Proposition 4.4(iii), the degree of the GCD in ui,α is at most
d0 · · · di−1di+1 · · · dn, which is the degree of the resultant, so their degrees
must be equal. Therefore they are constant multiples of each other. This
constant must be ±1 since the GCD is only determined up to invertible
elements, and the only invertible elements in Z[ui,α] are ±1.

Unfortunately computing the GCD of n+1 polynomials in many variables
is usually not feasible. The next construction, due to Macaulay’s original
work [Mac02], gives the resultant as the ratio of Rn and a smaller subdetermi-
nant of the Macaulay matrix M(F0, . . . , Fn). To define this subdeterminant
of M(F0, . . . , Fn) we need the following definition:

Definition 4.7. Define

En = {xα : |α| = D, ∃ i 6= j xdii |xα and x
dj
j |xα},

i.e. all the monomials of degree D which are divisible by xdii for more than
one i. Let R′n be the determinant of the submatrix of M(F0, . . . , Fn) with
rows and columns corresponding to the monomials En (note that the union
of the elements in Si is all the monomials of degree D).

Example 4.8. In the case of (d) = (1, 1, 2) the only monomial in E2 is xy.
The corresponding subdeterminant of M(F0, F1, F2) in (1) is the determinant
of the 1 × 1 submatrix of the second row and the fourth column, which is
[a1], so R′2 = a1.
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Theorem 4.9. Let F0, . . . , Fn be universal polynomials of degrees (d) =
(d0, . . . , dn). Then the resultant is given by

Res(d) = ±Rn

R′n
.

Proof Outline. We only give the main idea of the proof, which appeared
originally in [Mac02]. First one can prove that R′n divides Rn in Z[ui,α].
Once this is proved, one can give an argument based on counting the degrees
in ui,α of both sides. The ±1 multiple follows from the fact that

Rn(xd00 , . . . , x
dn
n ) = R′n(xd00 , . . . , x

dn
n ) = ±1.

Example 4.10. In the (d) = (1, 1, 2) case we have that

Res(1,1,2) = det(M(F0, F1, F2))/a1

which is equal to

−a21b2b3c6 − 2a1b2b1a2c3 + a3a1b2b1c6 + a1b2a2b3c5 − 2a3b2a2b3c1

+a21b
2
2c3 − a3a1b

2
2c5 + a23b

2
2c1 + b1a2a1b3c6 − 2a3b1a1b3c2 + b21a

2
2c3

−a3b21a2c6 + a23b
2
1c2 − b1a

2
2b3c5 + a3b1a2b2c5 + b23a

2
1c2 − c4a2a1b

2
3

+a3c4a2b3b1 + a3c4a1b2b3 − a23c4b2b1 + a22b
2
3c1.
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