Lecture Notes 3. MA 722

1. Geometric Resolution

The "Geometric Resolution" of an algebraic variety V is a special kind of triangular representation $T = \{f_1, \ldots, f_n\}$ where $f_1 \in k[u_1, \ldots, u_m, x_1]$ monic in x_1 and

 $f_i = p_i(u_1, \dots, u_m)x_i - q_i(u_1, \dots, u_m, x_1)$ $i = 2, \dots, n$

such that $p_i \neq 0$ and q_i is pseudo-reduced modulo f_1 . Similarly to the triangular representation computed by Wu's method, we will require that the polynomials which pseudo-reduce to zero modulo T are the ones which vanish on V generically (see previous lecture notes). Geometric resolution of higher dimensional varieties were first used by [GH91].

Not all varieties admit such a simple geometric resolution. First of all, since the $\mathbf{V}(T)$ is always "equidimensional", i.e. each of its irreducible components have the same dimension, therefore V has to be equidimensional as well. V being equidimensional is almost sufficient for the geometric resolution to exist. In this lecture notes we will prove that there exists a linear change of coordinates such that in the new coordinate system V admits a geometric resolution. As it turns out, a random linear change of variables will work with high probability. In later lecture notes we will give methods to compute a geometric resolution.

First we discuss the case when m = 0, i.e. V is zero dimensional.

1.1. **Zero Dimensional Case.** In the zero dimensional case the Geometric resolution is called *Rational Univariate Representation* (see [Rou96, Rou99]). The following theorem, called the "Shape Lemma", is the heart of the theory behind the rational univariate representation:

Theorem 1.1 (Shape Lemma). Let k be algebraically closed. Let I be a zero dimensional radical ideal in $k[x_1, \ldots, x_n]$. Assume that $\mathbf{V}(I)$ has m points such that their x_1 -coordinates are all distinct. Then the reduced Gröbner basis G for I with respect to the lexicographic order with x_1 being the last variable has the following form: G consists of n polynomials

$$g_{1} = x_{1}^{m} + h_{1}(x_{1})$$

$$g_{2} = x_{2} + h_{2}(x_{1})$$

$$\vdots$$

$$g_{n} = x_{n} + h_{n}(x_{1})$$

where h_1, \ldots, h_n are polynomials in x_1 of degree at most m - 1.

Proof. First we prove that the equivalence classes $[1], [x_1], \ldots, [x_1^{m-1}]$ form a basis for the k-vector space $k[x_1, \ldots, x_n]/I$. They are linearly independent over k, otherwise there exist $c_0, \ldots, c_{m-1} \in k$ such that

$$g(x_1) := c_0 + c_1 x_1 + \dots + c_{m-1} x_1^{m-1} \in I$$

Let $\xi_{1,1}, \ldots, \xi_{m,1}$ be the *m* distinct first coordinates of the points in $\mathbf{V}(I)$. Since $g \in I$, we have $g(\xi_{i,1}) = 0$ for all $i = 1, \ldots, m$, which gives a homogeneous linear systems for c_0, \ldots, c_{m-1} with coefficient matrix being a Vandermonde matrix. Using the fact that the Vandermonde matrix of *m* distinct numbers is non-singular implies

that all $c_i = 0$.

To prove that $[1], [x_1], \ldots, [x_1^{m-1}]$ generates $k[x_1, \ldots, x_n]/I$, it suffices to prove that $\dim_k k[x_1, \ldots, x_n]/I \le m.$

Consider the map

$$\phi: k[x_1,\ldots,x_n]/I \to \mathbb{C}^m; \quad [f] \mapsto (f(\xi_1),\ldots,f(\xi_m)) \quad \xi_j \in \mathbf{V}(I).$$

If $[f_0]$ is in the kernel of ϕ then $f_0 \in \mathbf{I}(\mathbf{V}(I)) = \sqrt{I} = I$, thus $[f_0] = 0$. Thus $\dim_k k[x_1, \ldots, x_n]/I \leq m$. This proves that $[1], [x_1], \ldots, [x_1^{m-1}]$ form a basis for $k[x_1, \ldots, x_n]/I$.

Now, if we express $[x_1^m], [x_2], \ldots, [x_n]$ in this basis, we get that polynomials of the form g_1, \ldots, g_n lie in the ideal *I*. Thus $\mathbf{V}(I) \subseteq \mathbf{V}(g_1, \ldots, g_n)$. Since g_1, \ldots, g_n has at most *m* common roots, therefore $\mathbf{V}(g_1, \ldots, g_n) = \mathbf{V}(I)$ which implies that

$$I = \langle g_1, \ldots, g_n \rangle$$

since I is radical. Note that g_1, \ldots, g_n forms a Gröbner basis for the order described in the claim.

1.2. **Positive Dimensional Case.** The positive dimensional version of the Shape Lemma is as follows:

Theorem 1.2 (Geometric Resolution). Let k be a field of characteristic zero and \overline{k} be its algebraic closure. Let $I \subset k[x_1, \ldots, x_t]$ be a radical ideal such that all irreducible components of $\mathbf{V}(I) \subset \overline{k}^t$ have dimension m. Then there exists a linear change of coordinates

$$y_1 = \sum_{i=1}^t c_{1,i} x_i, \ \dots, \ y_t = \sum_{i=1}^t c_{t,i} x_i, \ c_{i,j} \in k$$

such that y_1, \ldots, y_m are algebraically independent over the irreducible components of $\mathbf{V}(I)$, and if $\tilde{I} \subset k[y_1, \ldots, y_t]$ is the ideal obtained from I after the change of variables, then the ideal generated by \tilde{I} in $k(y_1, \ldots, y_m)[y_{m+1}, \ldots, y_t]$ is the same as

$$\langle P, L_{m+1}, \ldots, L_t \rangle \subset k(y_1, \ldots, y_m)[y_{m+1}, \ldots, y_t],$$

where $P \in k[y_1, \ldots, y_{m+1}]$ is monic in y_{m+1} and

$$L_{m+2} = Q_{m+2}(y_1, \dots, y_m) y_{m+2} + R_{m+2}(y_1, \dots, y_{m+1}),$$

$$\vdots$$

$$L_t = Q_t(y_1, \dots, y_m) y_t + R_t(y_1, \dots, y_{m+1}),$$

$$\in k[y_1, \dots, y_m] = R_{m+1} \in k[y_1, \dots, y_{m+1}],$$

with $Q_{m+i} \in k[y_1, \ldots, y_m]$, $R_{m+i} \in k[y_1, \ldots, y_m, y_{m+1}]$ and $\deg_{y_{m+1}}(R_{m+i}) < \deg_{y_{m+1}}(P)$ for all $i = 2, \ldots, m-t$.

We will need to prove three lemmas in order to prove the Theorem 1.2. These lemmas are important on their own right.

Lemma 1.3. Let $I \subset k[x_1, \ldots, x_t]$ be a radical ideal such that all irreducible components of $\mathbf{V}(I) \subset \overline{k}^t$ have dimension m. Then there exists coordinates x_{i_1}, \ldots, x_{i_m} such that the homomorphism

$$\varphi: k[x_{i_1}, \dots, x_{i_m}] \to k[x_1, \dots, x_t]/l$$

is injective.

 $\mathbf{2}$

Remark 1.4. φ being injective is equivalent to x_{i_1}, \ldots, x_{i_m} being algebraically independent over some of the irreducible components of $\mathbf{V}(I)$. Moreover, if \overline{k} is algebraically closed, then φ is injective if and only if the projection

$$\pi: \overline{k}^{t} \to \overline{k}^{m}; \ (x_1, \dots, x_t) \mapsto (x_{i_1}, \dots, x_{i_m})$$

restricted to $\mathbf{V}(I)$ is "generically surjective", i.e. the image $\pi(\mathbf{V}(I))$ is \overline{k}^m minus perhaps a lower dimensional algebraic set.

Example 1.5. If $\mathbf{V} = \mathbf{V}(x_1x_2 - 1)$ then V is irreducible and x_1 is algebraically independent over V, but the $x_1 = 0$ point is not in the projection $\pi(V)$, thus we need the term "generically surjective". We also need that \overline{k} is algebraically closed: if $I = \langle x^2 + y^2 - 1 \rangle \subset k[x, y]$ then m = 1 and we can choose either x or y to be algebraically independent over $\mathbf{V}(I)$. $\pi|_{\mathbf{V}(I)} : (x, y) \mapsto (x)$ is surjective if $k = \mathbb{C}$, but not surjective if $k = \mathbb{R}$.

If $I = \langle x - 3 \rangle \subset k[x, y]$ then m = 1, but x is not free over $\mathbf{V}(I)$.

Proof of Lemma 1.3. If m = 0 then we don't need to prove anything. Assume that $m \ge 1$. For $j = 1, \ldots, t$ we define

$$\varphi_j: \ k[x_j] \to k[x_1, \dots, x_t]/I.$$

Then there exists j such that $\ker(\varphi_j) = \{0\}$, otherwise, if for all j there exists $p_j(x_j) \neq 0 \in \ker(\varphi_j)$, then we would have

$$p_1(x_1),\ldots,p_t(x_t)\in I$$

which would imply that $\dim(\mathbf{V}(I)) = 0$. Define i_1 to be such that $\ker(\varphi_{i_1}) = \{0\}$, which proves the m = 1 case.

If $m \geq 2$ then define for $j = 1, \ldots, t, j \neq i_1$

$$\varphi_{i_1,j}: k[x_{i_1}, x_j] \to k[x_1, \dots, x_t]/I.$$

Then there exists j such that ker $(\varphi_{i_1,j}) = \{0\}$, otherwise, similarly as above, we can prove that dim $(\mathbf{V}(I)) = 1$. Define i_2 to be such that ker $(\varphi_{i_1,i_2}) = \{0\}$, which proves the m = 2 case. We can use induction to define i_1, \ldots, i_m as above. \Box

Next we define a property of the coordinate system $\{x_1, \ldots, x_t\}$ which assures that x_1, \ldots, x_m is algebraically independent over *all* irreducible components of V. We need two definitions first.

Definition 1.6. Given a commutative ring R and a ring extension S, an element s of S is called *integral* over R if it is one of the roots of a monic polynomial with coefficients in R. S is called an *integral extension* if every element of S is integral over R.

Definition 1.7. The coordinate system $\{x_1, \ldots, x_t\}$ is in *normal position* with respect to $\mathbf{V}(I) \subset \overline{k}^t$ if there exists $m \leq t$ such that the homomorphism

$$\varphi: k[x_1, \dots, x_m] \to k[x_1, \dots, x_t]/I$$

is injective and $k[x_1, \ldots, x_t]/I$ is integral over $k[x_1, \ldots, x_m]$.

Remark 1.8. Suppose $\{x_1, \ldots, x_t\}$ is in normal position with respect to $\mathbf{V}(I) \subset k^t$. Then for all irreducible components V' of $\mathbf{V}(I)$ of dimension m, x_1, \ldots, x_m are algebraically independent over V'. We will prove this in the Appendix below. Moreover, if \overline{k} is algebraically closed, then normal position implies that the projection

$$\pi: \ \overline{k}^{\iota} \to \overline{k}^{m}; \ (x_1, \dots, x_t) \mapsto (x_1, \dots, x_m)$$

restricted to $\mathbf{V}(I)$ is generically surjective and finite (each point has finite preimages).

The next lemma is the well-known Noether Normalization Lemma, proving that a linear change of variables is sufficient to get a coordinate system in normal position.

Lemma 1.9 (Noether Normalization Lemma). Let k, I, $\mathbf{V}(I)$ and m as in Theorem 1.2. Then there exists a linear change of coordinates

$$y_1 = \sum_{i=1}^t c_{1,i} x_i, \quad \dots \quad y_t = \sum_{i=1}^t c_{t,i} x_i \quad c_{i,j} \in k$$

such that y_1, \ldots, y_t is in normal position w.r.t. $\mathbf{V}(I)$, i.e. $k[y_1, \ldots, y_t]/\tilde{I}$ is an integral extension of $k[y_1, \ldots, y_m]$. Here $\tilde{I} \subset k[y_1, \ldots, y_t]$ is the ideal obtained from I after the change of variables.

Proof. If t = m then $k[x_1, \ldots, x_t]/I$ is clearly integral over $k[x_1, \ldots, x_t]$. If t > m then the equivalence classes $[x_1], \ldots, [x_t]$ in $k[x_1, \ldots, x_t]/I$ are algebraically dependent over k. Therefore, there exists a polynomial $F \neq 0 \in k[x_1, \ldots, x_{t-1}, x_t]$ which vanishes modulo I. F is possibly not a monic polynomial in x_t . Let $u_1 := x_1 - a_1x_t, \ldots, u_{t-1} := x_{t-1} - a_{t-1}x_t$ where $a_1, \ldots, a_{t-1} \in k$ will be specified later. Then

$$F(x_1, \dots, x_{t-1}, x_t) = F(u_1 + a_1 x_t, \dots, u_{t-1} + a_{t-1} x_t, x_t)$$

= $f(a_1, \dots, a_{t-1}) x_t^{d_t} + q(u_1, \dots, u_{t-1}, x_t)$
= $\overline{F}(u_1, \dots, u_{t-1}, x_t)$

where f is some non-zero polynomial in t-1 variables and $\deg_{x_t}(q) < d_t$. If we choose a_1, \ldots, a_{t-1} such that $f(a_1, \ldots, a_{t-1}) \neq 0$, then $\overline{F}/f(a_1, \ldots, a_{t-1})$ is a monic polynomial in x_t vanishing modulo \overline{I} , where $\overline{I} \subset k[u_1, \ldots, u_{t-1}, x_t]$ is obtained from I by substituting $u_i + a_i x_t$ into x_i . This shows that $[x_t]$ is integral over $k[u_1, \ldots, u_{t-1}]$. By induction on t, there is a linear change of coordinates y_1, \ldots, y_{t-1} of u_1, \ldots, u_{t-1} such that $k[y_1, \ldots, y_{t-1}]/(\tilde{I} \cap k[y_1, \ldots, y_{t-1}])$ is integral over $k[y_1, \ldots, y_m]$. Here \tilde{I} is as in the claim.

Let $y_t := x_t$. We will prove that $[y_t]$ satisfies a monic polynomial with coefficients in $k[y_1, \ldots, y_m]$. To prove this, we will use the so called *determinant trick*. The above argument implies that there is a finite set of elements $h_1, \ldots, h_N \in k[y_1, \ldots, y_t]$ such that the set

$$\{[h_1],\ldots,[h_N]\} \subset k[y_1,\ldots,y_t]/\tilde{I}$$

generates $k[y_1, \ldots, y_t]/\tilde{I}$ as a $k[y_1, \ldots, y_m]$ module. For example, $\{[y_{m+1}^{i_{m+1}} \cdots y_t^{i_t}] : 0 \leq i_{m+1} < d_{m+1}, \ldots, 0 \leq i_t < d_t\}$ will work as generators, where d_i is the degree of some monic polynomials in $\tilde{I} \cap k[y_1, \ldots, y_{i-1}][y_i]$, which we proved to exist. We can assume that $h_1 = 1$. Therefore, there exists $f_{i,j} \in k[y_1, \ldots, y_m]$ for $i, j = 1, \ldots, N$ such that

$$[y_t h_i] = \sum_{j=1}^N f_{i,j}[h_j]$$

in $k[y_1, \ldots, y_{t-1}, y_t]/\tilde{I}$, or equivalently

$$\sum_{j=1}^{N} (\delta_{i,j}[y_t] - f_{i,j})[h_j] = 0.$$

This can be written in a matrix form as Ah = 0, where

$$A = (\delta_{i,j}y_t - f_{i,j})_{i,j=1}^N \in k[y_1, \dots, y_m][y_t]^{N \times N} \text{ and } h = (h_j)_{j=1}^N \in k[y_1, \dots, y_t]^N.$$

Multiplying A by its adjoint, we get that $Dh \in \tilde{I}$ where D is the diagonal matrix with det(A) in its diagonals. Thus, det(A) $h_j \in \tilde{I}$ for all j = 1, ..., N, and in particular, for $h_1 = 1$, det(A) $\cdot 1 \in \tilde{I}$. Now det(A) gives the desired monic polynomial with coefficients in $k[y_1, ..., y_m]$ vanishing on $[y_t]$.

Remark 1.10. In the above proof we also showed that $k[y_1, \ldots, y_t]/\tilde{I}$ is integral over $k[y_1, \ldots, y_m]$ if and only if it is finitely generated as a $k[y_1, \ldots, y_m]$ -module. In general, a similar proof shows that a commutative ring extension S of R is integral over R if and only if S is finitely generated as an R-module.

This also implies that $k(y_1, \ldots, y_m)[y_{m+1}, \ldots, y_t]/\langle I \rangle$ is a finite dimensional vector space over the fraction field $k(y_1, \ldots, y_m)$. Here $\langle \tilde{I} \rangle$ denotes the ideal generated by \tilde{I} in the ring $k(y_1, \ldots, y_m)[y_{m+1}, \ldots, y_t]$.

Finally, our last lemma proves that if $\{x_1, \ldots, x_t\}$ is in normal position with respect to $\mathbf{V}(I)$, then there exists a *primitive element* $[u] \in k[x_1, \ldots, x_t]/I$ such that [u] generates $k[x_1, \ldots, x_t]/I$ as a $k(x_1, \ldots, x_m)$ -algebra.

Lemma 1.11 (Primitive element). Let k be a field of characteristic zero. Let $I \subset k[x_1, \ldots, x_t]$ be a radical ideal as above. Assume that $\{x_1, \ldots, x_t\}$ is in normal position with respect to $\mathbf{V}(I)$. Denote by $\langle I \rangle$ the ideal generated by I in $k(x_1, \ldots, x_m)[x_{m+1}, \ldots, x_t]$. Then there exists

$$u = c_{m+1}x_{m+1} + \dots + c_t x_t \quad c_i \in k$$

such that the equivalence classes $[1], [u], \ldots, [u^d]$ generate

$$\mathcal{A} := k(x_1, \dots, x_m)[x_{m+1}, \dots, x_t]/\langle I \rangle$$

as a $k(x_1, \ldots, x_m)$ -vector space for some $d \ge 0$.

Outline of Proof. We will prove that if $[u_1]$ and $[u_2]$ generate \mathcal{A} as an algebra over $k(x_1, \ldots, x_m)$ for some $u_1, u_2 \in k(x_1, \ldots, x_m)[x_{m+1}, \ldots, x_t]$, then $[u] := [u_1] + \lambda[u_2]$ is a primitive element for all except a finite $\lambda \in k$. Then the general case can be proved by induction.

Since $[u_1]$ and $[u_2]$ are integral over $k[x_1, \ldots, x_m]$, there exist

$$f \in k(x_1, \dots, x_m)[U_1]$$
 and $g \in k(x_1, \dots, x_m)[U_2]$,

the "minimal polynomials" of $[u_1]$ and $[u_2]$, such that $f(u_1)$ is the generator of the principal ideal $\langle I \rangle \cap k(x_1, \ldots, x_m)[u_1]$ and $g(u_2)$ is the generator of $\langle I \rangle \cap k(x_1, \ldots, x_m)[u_2]$. Here U_1 and U_2 are new variables. Since I is a radical ideal, one can prove that f and g are square-free over $k(x_1, \ldots, x_m)$.

We will prove that for all $\lambda \in k$, $[u] := [u_1] + \lambda[u_2]$ is a primitive element, unless

$$\lambda = -\frac{[u_1] - u_1'}{[u_2] - u_2'}$$

where $f(u'_1) = 0$ and $g(u'_2) = 0$, which excludes only finitely many choices for λ . It suffices to prove that $[u_2]$ is in the algebra generated by [u] over $k(x_1, \ldots, x_m)$, since it also implies that $[u_1] = [u] - \lambda [u_2]$ is also in this algebra. Fix λ , let U be a new variable and let

$$h(U_2, U) := f(U - \lambda U_2) \in k(x_1, \dots, x_m)[U_2, U].$$

Consider the Sylvester resultant $R_0(U)$ of $h(U_2, U)$ and $g(U_2)$ in the variable U_2 , and the first subresultant polynomial

$$R_1(U)U_2 + S_1(U) \in k(x_1, \dots, x_m)[U_2, U].$$

By construction $R_0(U)$ and $R_1(U)U_2 + S_1(U)$ are both in $\langle h(U_2, U), g(U) \rangle$, and they have the property that $R_0(y) = R_1(y) = 0$ for some y in the algebraic closure of $k(x_1, \ldots, x_m)$ if and only if $h(U_2, y)$ and $g(U_2)$ has more than one common roots, counted with multiplicity. Since $h([u_2], [u]) = 0$ and $g([u_2]) = 0$, therefore

$$R_0([u]) = 0$$
 and $R_1([u])[u_2] + S_1([u]) = 0.$

However, $R_1([u]) \neq 0$, otherwise $h(U_2, [u])$ and $g(U_2)$ has at least two distinct common roots (f and g are square-free), so there exist u'_1 and u'_2 such that $f(u'_1) = 0$ and $g(u'_2) = 0$ and

$$u_1' = [u] - \lambda u_2' = [u_1] + \lambda ([u_2] - u_2')$$

but we excluded this case for λ . We can assume that $R_0(U)$ is square-free over $k(x_1, \ldots, x_m)$, otherwise we take its square-free part. If $gcd_U(R_0(U), R_1(U)) = d(U)$, then $d([u]) \neq 0$ and R_0/d and R_1 are relatively prime, thus we can express

$$1 = p(U)R_0(U)/d(U) + q(U)R_1(U)$$

for some $p, q \in k(x_1, \ldots, x_m)[U]$. This implies that

$$0 = q([u]) \left(R_1([u])[u_2] + S_1([u]) \right) = [u_2] + q([u])S_1([u])$$

which proves that $[u_2]$ is in the algebra generated by [u] over $k(x_1, \ldots, x_m)$.

Now we are ready to proof the theorem.

Proof of Theorem 1.2. In the Noether Normalization Lemma we proved that there exists

$$y'_{1} = \sum_{i=1}^{t} c_{1,i} x_{i},$$
$$\vdots$$
$$y'_{t} = \sum_{i=1}^{t} c_{t,i} x_{i}$$

for some $c_{i,j} \in k$ such that $\{y'_1, \ldots, y'_t\}$ is in normal position with respect to $\mathbf{V}(I)$. Let $I' \subset k[y'_1, \ldots, y'_t]$ be the ideal obtained from I by the change of variables, and let $\langle I' \rangle$ be the ideal generated over $k(y'_1, \ldots, y'_m)$. By the primitive element theorem there exists

$$u = c_{m+1}y'_{m+1} + \dots + c_t y'_t \quad c_i \in k$$

such that [u] is a primitive element of $k(y'_1, \ldots, y'_m)[y'_{m+1}, \ldots, y'_t]/\langle I' \rangle$ over $k(y'_1, \ldots, y'_m)$. Assume that $c_{m+k} \neq 0$. Define $y_i := y'_i$ for $i = 1, \ldots, m, y_{m+1} := u$, and for $i = m+2, \ldots, t, y_i$ is defined to be one of the remaining y'_j such that $j \neq m+k$ and j > m. Let $\tilde{I} \subset k[y_1, \ldots, y_t]$ be the ideal obtained from I' after the change of coordinates, let $\langle \tilde{I} \rangle$ be the ideal generated by \tilde{I} over $k(y_1, \ldots, y_m)$, and denote

$$\mathcal{A} := k(y_1, \ldots, y_m)[y_{m+1}, \ldots, y_t]/\langle I \rangle.$$

Clearly, $\{y_1, \ldots, y_t\}$ is also in normal position, and $[y_{m+1}]$ is a primitive element. Let D be minimal such that

$$[1], [y_{m+1}], \dots, [y_{m+1}^D]$$

generates the $k(y_1, \ldots, y_m)$ -vector space \mathcal{A} . Since $[y_{m+1}]$ is integral over $k[y_1, \ldots, y_m]$, there exist $P_j \in k[y_1, \ldots, y_m]$ for $j = 0, \ldots, D$

$$[y_{m+1}^{D+1}] = \sum_{j=0}^{D} P_j[y_{m+1}^j].$$

This defines the coefficients of the monic polynomial P in the claim. For all $k = 2, \ldots, t - m$ and $j = 0, \ldots, D$ there exist $r_{m+k,j} \in k(y_1, \ldots, y_m)$ such that

$$[y_{m+k}] = \sum_{j=0}^{D} r_{m+k,j} [y_{m+1}^j] \in \mathcal{A}.$$

Let Q_{m+k} be the least common multiple of $r_{m+k,j}$ for $j = 0, \ldots, D$, and

$$R_{m+k} := Q_{m+k} \sum_{j=0}^{D} r_{m+k,j} y_{m+1}^{j} \in k[y_1, \dots, y_m, y_{m+1}].$$

Then $L_{m+k} := Q_{m+k}y_{m+k} + R_{m+k}$ is the linear polynomial in y_{m+k} in the claim. We claim that

$$\langle P, L_{m+1}, \ldots, L_t \rangle = \langle \tilde{I} \rangle \subset k(y_1, \ldots, y_m)[y_{m+1}, \ldots, y_t].$$

By construction, $P, L_{m+1}, \ldots, L_t \in \langle \tilde{I} \rangle$. Also, by the minimality of D we have that

$$\lim \mathcal{A} = D = \dim k(y_1, \dots, y_m)[y_{m+1}, \dots, y_t]/\langle P, L_{m+1}, \dots, L_t \rangle$$

which proves that the ideals above are the same.

Example 1.12. In this example we demonstrate what is the difference between the different representations of algebraic sets: Gröbner bases, Triangular Representation and Geometric resolution. Let

$$G := \{xy^3 - y^4, x^2y^2 - z^4\}.$$

Then G forms a Gröbner basis for the lexicographic order with x < y < z. Also, G is a triangular set for the variety $\mathbf{V}(G)$. However, it is not a geometric resolution, since the second is not linear in z. Fortunately, $\{x, y, z\}$ is in normal position, since both [y] and [z] in $k[x, y, z]/\langle G \rangle$ are integral over k[x]: $xy^3 - y^4 \in \langle G \rangle$ is monic in y and $z^4 - x^2y^2 \in \langle G \rangle$ is monic in z. Therefore, the primitive element theorem asserts that $u := y - \lambda z$ is a primitive element for almost all λ . However, after substituting for example y = u + z in G we get that the Gröbner basis w.r.t. lex x < u < z is

$$\tilde{G} := \left\{ -4 x^3 u^8 + 6 x^2 u^9 - 4 u^{10} x + u^{11}, 32 x^5 u^4 z + \cdots \text{ etc. } \right\}$$

which shows that u is not a primitive element, since the second polynomial has a leading coefficient depending on u. Other choices of λ are not working either.

The problem here is that I is not a radical ideal, and the "minimal polynomial" of [y] is not square-free over k(x), so no primitive element exists (check where the proof of the Primitive Element Theorem breaks down). To get the geometric resolution of $\mathbf{V}(G)$ we consider the radical ideal $\mathbf{I}(\mathbf{V}(G))$, generated by

$$H = \{x^3y - z^4, -xy + y^2, -z^5 + x^4z, -xz + zy\}.$$

Note that in practice we would not compute the radical of the ideal, but would instead use the square-free factorization of the minimal polynomials of the generators of the factor algebra. Notice that H already contains a subset

$$T := \{-z^5 + x^4 z, x^3 y - z^4\}$$

which is a geometric resolution of $\mathbf{V}(H)$. Note that the ideal generated by T and by H in k[x, y, z] are not the same, hence the differing Gröbner basis. Also, $\mathbf{V}(H)$ and $\mathbf{V}(T)$ differ, since $\mathbf{V}(T)$ contains the superfluous component $\mathbf{V}(x, z)$. However, T and H generate the same ideal in k(x)[y, z]. In fact, the polynomials which pseudo-reduce to 0 modulo T are the same as the ones which vanish generically on $\mathbf{V}(H)$.

References

- [GH91] Marc Giusti and Joos Heintz. Algorithmes disons rapides pour la décomposition d'une variété algébrique en composantes irréductibles et équidimensionnelles. In Teo Mora and Carlo Traverso, editors, *Effective Methods in Algebraic Geometry*, pages 169–194. Birkhäuser, 1991.
- [Rou96] F. Rouillier. Algorithmes efficaces pour l'étude des zéros réels des systèmes polynomiaux. PhD thesis, Université de Rennes I, may 1996.
- [Rou99] F. Rouillier. Solving zero-dimensional systems through the rational univariate representation. Journal of Applicable Algebra in Engineering, Communication and Computing, 9(5):433-461, 1999.

APPENDIX

Theorem 1.13. Let k be algebraically closed and assume that $\{x_1, \ldots, x_t\}$ is in normal position with respect to $\mathbf{V}(I) \subset k^t$. Then for all irreducible components V' of $\mathbf{V}(I)$ of dimension m, x_1, \ldots, x_m are algebraically independent over V'.

(a) Prove that for any irreducible variety $V^* \subset k^t$, and any $f \in k[x_1, \ldots, x_t]$ either $f \in \mathbf{I}(V^*)$ or dim $V^* \cap \mathbf{V}(f) \leq \dim V^* - 1$.

Proof. Claim 1: For any irreducible variety $V^* \subset k^t$, and any $f \in k[x_1, \ldots, x_t]$ either $f \in \mathbf{I}(V^*)$ or dim $V^* \cap \mathbf{V}(f) \leq \dim V^* - 1$.

<u>Proof of Claim 1:</u> Assume that $V^* \cap V(f)$ has the same dimension as V^* but $f \notin I(V^*)$. Denote dim $(V^*) = m$. Let $x_{i_1}, \ldots x_{i_m}$ algebraically independent variables over $V^* \cap V(f)$. Then $x_{i_1}, \ldots x_{i_m}$ is also algebraically independent over V^* , since $I(V^*) \subset \langle I(V^*), f \rangle$. Therefore, any $[y] \in k[x_1, \ldots, x_t]/I(V^*)$ is algebraic over $k(x_{i_1}, \ldots, x_{i_m})$. In particular, [f] is algebraic, so there exists a polynomial $g \in k(x_{i_1}, \ldots, x_{i_m})[T]$ such that

$$g(x_{i_1},\ldots x_{i_m},f)\in I(V^*).$$

Let $g = \sum_{i=0}^{d} g_i(x_{i_1}, \dots, x_{i_m})T^i$ and assume that we chose g such that d is minimal. Then $g_0 \neq 0$, otherwise $g(x_{i_1}, \dots, x_{i_m}, f)$ is divisible by f, and using that $I(V^*)$ is a prime ideal and $f \notin I(V^*)$, we could find a smaller degree polynomial vanishing on [f]. However,

$$0 \equiv g(x_{i_1}, \dots, x_{i_m}, f) \equiv g_0(x_{i_1}, \dots, x_{i_m}) \mod \langle I(V^*), f \rangle$$

which implies that $x_{i_1}, \ldots x_{i_m}$ is algebraically dependent over $V^* \cap V(f)$, a contradiction.

<u>Claim 2:</u> If $V' \subset \mathbf{V}(I)$ is irreducible of dimension m and $\mathbf{I}(V') \cap k[x_1, \ldots, x_m] \neq \{0\}$ then there exists r > m such that all polynomials in $\mathbf{I}(V') \cap k[x_1, \ldots, x_{r-1}, x_r]$ vanish modulo $\mathbf{I}(V') \cap k[x_1, \ldots, x_{r-1}]$.

<u>Proof of Claim 2</u>: Assume, to the contrary of the claim, that for every $j = 0, \ldots t-m$ there exists $g_{m+j} \in I(V') \cap k[x_1, \ldots, x_{m+j}]$ such that not all coefficients of g_{m+j} - as a polynomial in x_{m+j} - are in I(V'). Note that $g_m \in k[x_1, \ldots, x_m] \cap I(V')$ exists by the assumption of the claim. Let V'_{m+j} be the irreducible component of $V(g_m, g_{m+1}, \ldots, g_{m+j})$ which contains V'. (Note that $V(g_m, g_{m+1}, \ldots, g_{m+j})$ contains V', so V'_{m+j} exists.)

We will prove that dim $V'_{m+j} = t - (j+1)$ by induction on j. For j = 0 the claim is trivial. For j + 1: g_{m+j+1} cannot identically vanish on V'_{m+j} since otherwise $g_{m+j+1} \in I(V'_{m+j}) \cap k[x_1, \ldots, x_{m+j}]$. But $I(V'_{m+j+1}) \subset I(V')$, which would also imply that $g_{m+j+1} \in I(V') \cap k[x_1, \ldots, x_{m+j}]$, contradicting the definition of g_{m+j} . Therefore, using part (a), we have that

 $\dim V'_{m+j+1} = \dim V'_{m+j} \cap V(g_{m+j+1}) = \dim V'_{m+j} - 1$

which is equal to t - (j + 1) - 1 = t - (j + 1 + 1), using the inductive hypotheses. Thus, dim $V' \leq \dim V'_t = t - (t - m + 1) = m - 1$ contradicting the assumption that dim V' = m.

<u>Proof of Theorem 1.13.</u> Suppose there exists $V' \subset \mathbf{V}(I)$ irreducible such that $\{x_1, \ldots, x_m\}$ is not algebraically independent w.r.t. V', i.e. $\mathbf{I}(V') \cap k[x_1, \ldots, x_m] \neq \{0\}$. By Claim 2, there exists r > m such that all polynomials in $\mathbf{I}(V') \cap k[x_1, \ldots, x_{r-1}, x_r]$ vanish modulo $\mathbf{I}(V') \cap k[x_1, \ldots, x_{r-1}]$. Then the equivalent class $[x_r] \in k[x_1, \ldots, x_t]/I$ is not integral over $k[x_1, \ldots, x_m]$, otherwise there were a polynomial $p[x_1, \ldots, x_m, x_r] \in I \subset |(V')$ that is monic in x_r , so its leading coefficient 1 cannot vanish modulo $\mathbf{I}(V') \cap k[x_1, \ldots, x_r]$. Thus $\{x_1, \ldots, x_t\}$ is not in normal position w.r.t. $\mathbf{V}(I)$.

L			1
L			1
-	_	_	