
Lecture Notes 3.
MA 722

1. Geometric Resolution

The “Geometric Resolution” of an algebraic variety V is a special kind of tri-
angular representation T = {f1, . . . , fn} where f1 ∈ k[u1, . . . , um, x1] monic in x1
and

fi = pi(u1, . . . , um)xi − qi(u1, . . . , um, x1) i = 2, . . . , n

such that pi 6= 0 and qi is pseudo-reduced modulo f1. Similarly to the triangular
representation computed by Wu’s method, we will require that the polynomials
which pseudo-reduce to zero modulo T are the ones which vanish on V generically
(see previous lecture notes). Geometric resolution of higher dimensional varieties
were first used by [GH91].

Not all varieties admit such a simple geometric resolution. First of all, since the
V(T ) is always “equidimensional”, i.e. each of its irreducible components have the
same dimension, therefore V has to be equidimensional as well. V being equidi-
mensional is almost sufficient for the geometric resolution to exist. In this lecture
notes we will prove that there exists a linear change of coordinates such that in the
new coordinate system V admits a geometric resolution. As it turns out, a random
linear change of variables will work with high probability. In later lecture notes we
will give methods to compute a geometric resolution.

First we discuss the case when m = 0, i.e. V is zero dimensional.

1.1. Zero Dimensional Case. In the zero dimensional case the Geometric res-
olution is called Rational Univariate Representation (see [Rou96, Rou99]). The
following theorem, called the “Shape Lemma”, is the heart of the theory behind
the rational univariate representation:

Theorem 1.1 (Shape Lemma). Let k be algebraically closed. Let I be a zero
dimensional radical ideal in k[x1, . . . , xn]. Assume that V(I) has m points such
that their x1-coordinates are all distinct. Then the reduced Gröbner basis G for
I with respect to the lexicographic order with x1 being the last variable has the
following form: G consists of n polynomials

g1 = xm1 + h1(x1)

g2 = x2 + h2(x1)

...

gn = xn + hn(x1)

where h1, . . . , hn are polynomials in x1 of degree at most m− 1.

Proof. First we prove that the equivalence classes [1], [x1], . . . , [xm−11 ] form a ba-
sis for the k-vector space k[x1, . . . , xn]/I. They are linearly independent over k,
otherwise there exist c0, . . . , cm−1 ∈ k such that

g(x1) := c0 + c1x1 + · · ·+ cm−1x
m−1
1 ∈ I.

Let ξ1,1, . . . , ξm,1 be the m distinct first coordinates of the points in V(I). Since g ∈
I, we have g(ξi,1) = 0 for all i = 1, . . . ,m, which gives a homogeneous linear systems
for c0, . . . , cm−1 with coefficient matrix being a Vandermonde matrix. Using the
fact that the Vandermonde matrix of m distinct numbers is non-singular implies
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that all ci = 0.
To prove that [1], [x1], . . . , [xm−11 ] generates k[x1, . . . , xn]/I, it suffices to prove that

dimk k[x1, . . . , xn]/I ≤ m.
Consider the map

φ : k[x1, . . . , xn]/I → Cm; [f ] 7→ (f(ξ1), . . . , f(ξm)) ξj ∈ V(I).

If [f0] is in the kernel of φ then f0 ∈ I(V(I)) =
√
I = I, thus [f0] = 0. Thus

dimk k[x1, . . . , xn]/I ≤ m. This proves that [1], [x1], . . . , [xm−11 ] form a basis for
k[x1, . . . , xn]/I.
Now, if we express [xm1 ], [x2], . . . , [xn] in this basis, we get that polynomials of the
form g1, . . . , gn lie in the ideal I. Thus V(I) ⊆ V(g1, . . . , gn). Since g1, . . . , gn has
at most m common roots, therefore V(g1, . . . , gn) = V(I) which implies that

I = 〈g1, . . . , gn〉
since I is radical. Note that g1, . . . , gn forms a Gröbner basis for the order described
in the claim. �

1.2. Positive Dimensional Case. The positive dimensional version of the Shape
Lemma is as follows:

Theorem 1.2 (Geometric Resolution). Let k be a field of characteristic zero and
k be its algebraic closure. Let I ⊂ k[x1, . . . , xt] be a radical ideal such that all

irreducible components of V(I) ⊂ kt have dimension m. Then there exists a linear
change of coordinates

y1 =

t∑
i=1

c1,ixi, . . . , yt =

t∑
i=1

ct,ixi, ci,j ∈ k

such that y1, . . . , ym are algebraically independent over the irreducible components
of V(I), and if Ĩ ⊂ k[y1, . . . , yt] is the ideal obtained from I after the change of

variables, then the ideal generated by Ĩ in k(y1, . . . ym)[ym+1, . . . , yt] is the same as

〈P,Lm+1, . . . , Lt〉 ⊂ k(y1, . . . ym)[ym+1, . . . , yt],

where P ∈ k[y1, . . . , ym+1] is monic in ym+1 and

Lm+2 = Qm+2(y1, . . . , ym) ym+2 +Rm+2(y1, . . . , ym+1),

...

Lt = Qt(y1, . . . , ym) yt +Rt(y1, . . . , ym+1),

with Qm+i ∈ k[y1, . . . , ym], Rm+i ∈ k[y1, . . . , ym, ym+1] and degym+1
(Rm+i) <

degym+1
(P ) for all i = 2, . . .m− t.

We will need to prove three lemmas in order to prove the Theorem 1.2. These
lemmas are important on their own right.

Lemma 1.3. Let I ⊂ k[x1, . . . , xt] be a radical ideal such that all irreducible com-

ponents of V(I) ⊂ kt have dimension m. Then there exists coordinates xi1 , . . . , xim
such that the homomorphism

ϕ : k[xi1 , . . . , xim ]→ k[x1, . . . , xt]/I

is injective.



3

Remark 1.4. ϕ being injective is equivalent to xi1 , . . . , xim being algebraically
independent over some of the irreducible components of V(I). Moreover, if k is
algebraically closed, then ϕ is injective if and only if the projection

π : k
t → k

m
; (x1, . . . , xt) 7→ (xi1 , . . . , xim)

restricted to V(I) is “generically surjective”, i.e. the image π(V(I)) is k
m

minus
perhaps a lower dimensional algebraic set.

Example 1.5. If V = V(x1x2 − 1) then V is irreducible and x1 is algebraically
independent over V , but the x1 = 0 point is not in the projection π(V ), thus we
need the term “generically surjective”. We also need that k is algebraically closed:
if I = 〈x2 + y2 − 1〉 ⊂ k[x, y] then m = 1 and we can choose either x or y to be
algebraically independent over V(I). π|V(I) : (x, y) 7→ (x) is surjective if k = C,
but not surjective if k = R.
If I = 〈x− 3〉 ⊂ k[x, y] then m = 1, but x is not free over V(I).

Proof of Lemma 1.3. If m = 0 then we don’t need to prove anything. Assume that
m ≥ 1. For j = 1, . . . , t we define

ϕj : k[xj ]→ k[x1, . . . , xt]/I.

Then there exists j such that ker(ϕj) = {0}, otherwise, if for all j there exists
pj(xj) 6= 0 ∈ ker(ϕj), then we would have

p1(x1), . . . , pt(xt) ∈ I
which would imply that dim(V(I)) = 0. Define i1 to be such that ker(ϕi1) = {0},
which proves the m = 1 case.
If m ≥ 2 then define for j = 1, . . . , t, j 6= i1

ϕi1,j : k[xi1 , xj ]→ k[x1, . . . , xt]/I.

Then there exists j such that ker(ϕi1,j) = {0}, otherwise, similarly as above, we
can prove that dim(V(I)) = 1. Define i2 to be such that ker(ϕi1,i2) = {0}, which
proves the m = 2 case. We can use induction to define i1, . . . , im as above. �

Next we define a property of the coordinate system {x1, . . . , xt} which assures
that x1, . . . , xm is algebraically independent over all irreducible components of V .
We need two definitions first.

Definition 1.6. Given a commutative ring R and a ring extension S, an element
s of S is called integral over R if it is one of the roots of a monic polynomial with
coefficients in R. S is called an integral extension if every element of S is integral
over R.

Definition 1.7. The coordinate system {x1, . . . , xt} is in normal position with

respect to V(I) ⊂ kt if there exists m ≤ t such that the homomorphism

ϕ : k[x1, . . . , xm]→ k[x1, . . . , xt]/I

is injective and k[x1, . . . , xt]/I is integral over k[x1, . . . , xm].

Remark 1.8. Suppose {x1, . . . , xt} is in normal position with respect to V(I) ⊂ kt.
Then for all irreducible components V ′ of V(I) of dimension m, x1, . . . , xm are alge-
braically independent over V ′. We will prove this in the Appendix below. Moreover,
if k is algebraically closed, then normal position implies that the projection

π : k
t → k

m
; (x1, . . . , xt) 7→ (x1, . . . , xm)
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restricted to V(I) is generically surjective and finite (each point has finite pre-
images).

The next lemma is the well-known Noether Normalization Lemma, proving that a
linear change of variables is sufficient to get a coordinate system in normal position.

Lemma 1.9 (Noether Normalization Lemma). Let k, I, V(I) and m as in Theorem
1.2. Then there exists a linear change of coordinates

y1 =

t∑
i=1

c1,ixi, . . . yt =

t∑
i=1

ct,ixi ci,j ∈ k

such that y1, . . . , ytis in normal position w.r.t. V(I), i.e. k[y1, . . . , yt]/Ĩ is an

integral extension of k[y1, . . . , ym]. Here Ĩ ⊂ k[y1, . . . , yt] is the ideal obtained from
I after the change of variables.

Proof. If t = m then k[x1, . . . , xt]/I is clearly integral over k[x1, . . . , xt]. If t > m
then the equivalence classes [x1], . . . , [xt] in k[x1, . . . , xt]/I are algebraically depen-
dent over k. Therefore, there exists a polynomial F 6= 0 ∈ k[x1, . . . , xt−1, xt]
which vanishes modulo I. F is possibly not a monic polynomial in xt. Let
u1 := x1 − a1xt, . . . , ut−1 := xt−1 − at−1xt where a1, . . . , at−1 ∈ k will be spec-
ified later. Then

F (x1, . . . , xt−1, xt) = F (u1 + a1xt, . . . , ut−1 + at−1xt, xt)

= f(a1, . . . , at−1)xdt
t + q(u1, . . . , ut−1, xt)

= F (u1, . . . , ut−1, xt)

where f is some non-zero polynomial in t − 1 variables and degxt
(q) < dt. If

we choose a1, . . . , at−1 such that f(a1, . . . , at−1) 6= 0, then F/f(a1, . . . , at−1) is
a monic polynomial in xt vanishing modulo I, where I ⊂ k[u1, . . . , ut−1, xt] is
obtained from I by substituting ui + aixt into xi. This shows that [xt] is integral
over k[u1, . . . , ut−1]. By induction on t, there is a linear change of coordinates

y1, . . . , yt−1 of u1, . . . , ut−1 such that k[y1, . . . , yt−1]/(Ĩ ∩ k[y1, . . . , yt−1]) is integral

over k[y1, . . . , ym]. Here Ĩ is as in the claim.
Let yt := xt. We will prove that [yt] satisfies a monic polynomial with coefficients in
k[y1, . . . , ym]. To prove this, we will use the so called determinant trick. The above
argument implies that there is a finite set of elements h1, . . . , hN ∈ k[y1, . . . , yt]
such that the set

{[h1], . . . , [hN ]} ⊂ k[y1, . . . , yt]/Ĩ

generates k[y1, . . . , yt]/Ĩ as a k[y1, . . . , ym] module. For example, {[yim+1

m+1 · · · y
it
t ] :

0 ≤ im+1 < dm+1, . . . , 0 ≤ it < dt} will work as generators, where di is the degree of

some monic polynomials in Ĩ ∩k[y1, . . . , yi−1][yi], which we proved to exist. We can
assume that h1 = 1. Therefore, there exists fi,j ∈ k[y1, . . . , ym] for i, j = 1, . . . , N
such that

[ythi] =

N∑
j=1

fi,j [hj ]

in k[y1, . . . , yt−1, yt]/Ĩ, or equivalently

N∑
j=1

(δi,j [yt]− fi,j)[hj ] = 0.
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This can be written in a matrix form as Ah = 0, where

A = (δi,jyt − fi,j)Ni,j=1 ∈ k[y1, . . . , ym][yt]
N×N and h = (hj)

N
j=1 ∈ k[y1, . . . , yt]

N .

Multiplying A by its adjoint, we get that Dh ∈ Ĩ where D is the diagonal matrix
with det(A) in its diagonals. Thus, det(A)hj ∈ Ĩ for all j = 1, . . . , N , and in

particular, for h1 = 1, det(A)·1 ∈ Ĩ. Now det(A) gives the desired monic polynomial
with coefficients in k[y1, . . . , ym] vanishing on [yt]. �

Remark 1.10. In the above proof we also showed that k[y1, . . . , yt]/Ĩ is integral
over k[y1, . . . , ym] if and only if it is finitely generated as a k[y1, . . . , ym]-module. In
general, a similar proof shows that a commutative ring extension S of R is integral
over R if and only if S is finitely generated as an R-module.
This also implies that k(y1, . . . , ym)[ym+1, . . . yt]/〈Ĩ〉 is a finite dimensional vector

space over the fraction field k(y1, . . . , ym). Here 〈Ĩ〉 denotes the ideal generated by

Ĩ in the ring k(y1, . . . , ym)[ym+1, . . . yt].

Finally, our last lemma proves that if {x1, . . . , xt} is in normal position with
respect to V(I), then there exists a primitive element [u] ∈ k[x1, . . . , xt]/I such
that [u] generates k[x1, . . . , xt]/I as a k(x1, . . . , xm)-algebra.

Lemma 1.11 (Primitive element). Let k be a field of characteristic zero. Let
I ⊂ k[x1, . . . , xt] be a radical ideal as above. Assume that {x1, . . . , xt} is in
normal position with respect to V(I). Denote by 〈I〉 the ideal generated by I in
k(x1, . . . , xm)[xm+1, . . . , xt]. Then there exists

u = cm+1xm+1 + · · ·+ ctxt ci ∈ k
such that the equivalence classes [1], [u], . . . , [ud] generate

A := k(x1, . . . , xm)[xm+1, . . . , xt]/〈I〉
as a k(x1, . . . , xm)-vector space for some d ≥ 0.

Outline of Proof. We will prove that if [u1] and [u2] generate A as an algebra over
k(x1, . . . , xm) for some u1, u2 ∈ k(x1, . . . , xm)[xm+1, . . . , xt], then [u] := [u1]+λ[u2]
is a primitive element for all except a finite λ ∈ k. Then the general case can be
proved by induction.
Since [u1] and [u2] are integral over k[x1, . . . , xm], there exist

f ∈ k(x1, . . . , xm)[U1] and g ∈ k(x1, . . . , xm)[U2],

the “minimal polynomials” of [u1] and [u2], such that f(u1) is the generator of
the principal ideal 〈I〉 ∩ k(x1, . . . , xm)[u1] and g(u2) is the generator of 〈I〉 ∩
k(x1, . . . , xm)[u2]. Here U1 and U2 are new variables. Since I is a radical ideal, one
can prove that f and g are square-free over k(x1, . . . , xm).
We will prove that for all λ ∈ k, [u] := [u1] + λ[u2] is a primitive element, unless

λ = − [u1]− u′1
[u2]− u′2

where f(u′1) = 0 and g(u′2) = 0, which excludes only finitely many choices for λ.
It suffices to prove that [u2] is in the algebra generated by [u] over k(x1, . . . , xm),
since it also implies that [u1] = [u]− λ[u2] is also in this algebra.
Fix λ, let U be a new variable and let

h(U2, U) := f(U − λU2) ∈ k(x1, . . . , xm)[U2, U ].
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Consider the Sylvester resultant R0(U) of h(U2, U) and g(U2) in the variable U2,
and the first subresultant polynomial

R1(U)U2 + S1(U) ∈ k(x1, . . . , xm)[U2, U ].

By construction R0(U) and R1(U)U2 + S1(U) are both in 〈h(U2, U), g(U)〉, and
they have the property that R0(y) = R1(y) = 0 for some y in the algebraic closure
of k(x1, . . . , xm) if and only if h(U2, y) and g(U2) has more than one common roots,
counted with multiplicity. Since h([u2], [u]) = 0 and g([u2]) = 0, therefore

R0([u]) = 0 and R1([u])[u2] + S1([u]) = 0.

However, R1([u]) 6= 0, otherwise h(U2, [u]) and g(U2) has at least two distinct
common roots (f and g are square-free), so there exist u′1 and u′2 such that f(u′1) = 0
and g(u′2) = 0 and

u′1 = [u]− λu′2 = [u1] + λ([u2]− u′2)

but we excluded this case for λ. We can assume that R0(U) is square-free over
k(x1, . . . , xm), otherwise we take its square-free part. If gcdU (R0(U), R1(U)) =
d(U), then d([u]) 6= 0 and R0/d and R1 are relatively prime, thus we can express

1 = p(U)R0(U)/d(U) + q(U)R1(U)

for some p, q ∈ k(x1, . . . , xm)[U ]. This implies that

0 = q([u]) (R1([u])[u2] + S1([u])) = [u2] + q([u])S1([u])

which proves that [u2] is in the algebra generated by [u] over k(x1, . . . , xm). �

Now we are ready to proof the theorem.

Proof of Theorem 1.2. In the Noether Normalization Lemma we proved that there
exists

y′1 =

t∑
i=1

c1,ixi,

...

y′t =

t∑
i=1

ct,ixi

for some ci,j ∈ k such that {y′1, . . . , y′t} is in normal position with respect to V(I).
Let I ′ ⊂ k[y′1, . . . , y

′
t] be the ideal obtained from I by the change of variables, and

let 〈I ′〉 be the ideal generated over k(y′1, . . . , y
′
m). By the primitive element theorem

there exists

u = cm+1y
′
m+1 + · · ·+ cty

′
t ci ∈ k

such that [u] is a primitive element of k(y′1, . . . , y
′
m)[y′m+1, . . . , y

′
t]/〈I ′〉 over k(y′1, . . . , y

′
m).

Assume that cm+k 6= 0. Define yi := y′i for i = 1, . . . ,m, ym+1 := u, and for
i = m + 2, . . . , t, yi is defined to be one of the remaining y′j such that j 6= m + k

and j > m. Let Ĩ ⊂ k[y1, . . . , yt] be the ideal obtained from I ′ after the change of

coordinates, let 〈Ĩ〉 be the ideal generated by Ĩ over k(y1, . . . , ym), and denote

A := k(y1, . . . , ym)[ym+1, . . . , yt]/〈Ĩ〉.
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Clearly, {y1, . . . , yt} is also in normal position, and [ym+1] is a primitive element.
Let D be minimal such that

[1], [ym+1], . . . , [yDm+1]

generates the k(y1, . . . , ym)-vector spaceA. Since [ym+1] is integral over k[y1, . . . , ym],
there exist Pj ∈ k[y1, . . . , ym] for j = 0, . . . , D

[yD+1
m+1] =

D∑
j=0

Pj [y
j
m+1].

This defines the coefficients of the monic polynomial P in the claim. For all k =
2, . . . , t−m and j = 0, . . . , D there exist rm+k,j ∈ k(y1, . . . ym) such that

[ym+k] =

D∑
j=0

rm+k,j [y
j
m+1] ∈ A.

Let Qm+k be the least common multiple of rm+k,j for j = 0, . . . , D, and

Rm+k := Qm+k

D∑
j=0

rm+k,j y
j
m+1 ∈ k[y1, . . . ym, ym+1].

Then Lm+k := Qm+kym+k + Rm+k is the linear polynomial in ym+k in the claim.
We claim that

〈P,Lm+1, . . . , Lt〉 = 〈Ĩ〉 ⊂ k(y1, . . . ym)[ym+1, . . . , yt].

By construction, P,Lm+1, . . . , Lt ∈ 〈Ĩ〉. Also, by the minimality of D we have that

dimA = D = dim k(y1, . . . ym)[ym+1, . . . , yt]/〈P,Lm+1, . . . , Lt〉
which proves that the ideals above are the same. �

Example 1.12. In this example we demonstrate what is the difference between
the different representations of algebraic sets: Gröbner bases, Triangular Represen-
tation and Geometric resolution. Let

G := {xy3 − y4, x2y2 − z4}.
Then G forms a Gröbner basis for the lexicographic order with x < y < z. Also, G
is a triangular set for the variety V(G). However, it is not a geometric resolution,
since the second is not linear in z. Fortunately, {x, y, z} is in normal position, since
both [y] and [z] in k[x, y, z]/〈G〉 are integral over k[x]: xy3 − y4 ∈ 〈G〉 is monic
in y and z4 − x2y2 ∈ 〈G〉 is monic in z. Therefore, the primitive element theorem
asserts that u := y − λz is a primitive element for almost all λ. However, after
substituting for example y = u + z in G we get that the Gröbner basis w.r.t. lex
x < u < z is

G̃ := {−4x3u8 + 6x2u9 − 4u10x+ u11, 32x5u4z + · · · etc. }
which shows that u is not a primitive element, since the second polynomial has a
leading coefficient depending on u. Other choices of λ are not working either.
The problem here is that I is not a radical ideal, and the “minimal polynomial” of
[y] is not square-free over k(x), so no primitive element exists (check where the proof
of the Primitive Element Theorem breaks down). To get the geometric resolution
of V(G) we consider the radical ideal I(V(G)), generated by

H = {x3y − z4,−xy + y2,−z5 + x4z,−xz + zy}.
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Note that in practice we would not compute the radical of the ideal, but would in-
stead use the square-free factorization of the minimal polynomials of the generators
of the factor algebra. Notice that H already contains a subset

T := {−z5 + x4z, x3y − z4}
which is a geometric resolution of V(H). Note that the ideal generated by T and by
H in k[x, y, z] are not the same, hence the differing Gröbner basis. Also, V(H) and
V(T ) differ, since V(T ) contains the superfluous component V(x, z). However,
T and H generate the same ideal in k(x)[y, z]. In fact, the polynomials which
pseudo-reduce to 0 modulo T are the same as the ones which vanish generically on
V(H).
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Appendix

Theorem 1.13. Let k be algebraically closed and assume that {x1, . . . , xt} is in
normal position with respect to V(I) ⊂ kt. Then for all irreducible components V ′

of V(I) of dimension m, x1, . . . , xm are algebraically independent over V ′.

(a) Prove that for any irreducible variety V ∗ ⊂ kt, and any f ∈ k[x1, . . . , xt] either
f ∈ I(V ∗) or dimV ∗ ∩V(f) ≤ dimV ∗ − 1.

Proof. Claim 1: For any irreducible variety V ∗ ⊂ kt, and any f ∈ k[x1, . . . , xt]
either f ∈ I(V ∗) or dimV ∗ ∩V(f) ≤ dimV ∗ − 1.

Proof of Claim 1: Assume that V ∗∩V (f) has the same dimension as V ∗ but f 6∈
I(V ∗). Denote dim(V ∗) = m. Let xi1 , . . . xim algebraically independent variables
over V ∗ ∩ V (f). Then xi1 , . . . xim is also algebraically independent over V ∗, since
I(V ∗) ⊂ 〈I(V ∗), f〉. Therefore, any [y] ∈ k[x1, . . . , xt]/I(V ∗) is algebraic over
k(xi1 , . . . xim). In particular, [f ] is algebraic, so there exists a polynomial g ∈
k(xi1 , . . . xim)[T ] such that

g(xi1 , . . . xim , f) ∈ I(V ∗).

Let g =
∑d

i=0 gi(xi1 , . . . xim)T i and assume that we chose g such that d is minimal.
Then g0 6= 0, otherwise g(xi1 , . . . xim , f) is divisible by f , and using that I(V ∗) is
a prime ideal and f 6∈ I(V ∗), we could find a smaller degree polynomial vanishing
on [f ]. However,

0 ≡ g(xi1 , . . . xim , f) ≡ g0(xi1 , . . . xim) mod 〈I(V ∗), f〉
which implies that xi1 , . . . xim is algebraically dependent over V ∗ ∩ V (f), a contra-
diction.
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Claim 2: If V ′ ⊂ V(I) is irreducible of dimension m and I(V ′)∩ k[x1, . . . , xm] 6=
{0} then there exists r > m such that all polynomials in I(V ′)∩ k[x1, . . . , xr−1, xr]
vanish modulo I(V ′) ∩ k[x1, . . . , xr−1].

Proof of Claim 2: Assume, to the contrary of the claim, that for every j =
0, . . . t−m there exisst gm+j ∈ I(V ′)∩k[x1, . . . , xm+j ] such that not all coefficients of
gm+j - as a polynomial in xm+j - are in I(V ′). Note that gm ∈ k[x1, . . . , xm]∩I(V ′)
exists by the assumption of the claim. Let V ′m+j be the irreducible component of
V (gm, gm+1, . . . , gm+j) which contains V ′. (Note that V (gm, gm+1, . . . , gm+j) con-
tains V ′, so V ′m+j exists.)

We will prove that dimV ′m+j = t− (j+1) by induction on j. For j = 0 the claim
is trivial. For j + 1: gm+j+1 cannot identically vanish on V ′m+j since otherwise
gm+j+1 ∈ I(V ′m+j) ∩ k[x1, . . . , xm+j ]. But I(V ′m+j+1) ⊂ I(V ′), which would also
imply that gm+j+1 ∈ I(V ′) ∩ k[x1, . . . , xm+j ], contradicting the definition of gm+j .
Therefore, using part (a), we have that

dimV ′m+j+1 = dimV ′m+j ∩ V (gm+j+1) = dimV ′m+j − 1

which is equal to t− (j + 1)− 1 = t− (j + 1 + 1), using the inductive hypotheses.
Thus, dimV ′ ≤ dimV ′t = t− (t−m+ 1) = m− 1 contradicting the assumption

that dimV ′ = m.

Proof of Theorem 1.13. Suppose there exists V ′ ⊂ V(I) irreducible such that
{x1, . . . , xm} is not algebraically independent w.r.t. V ′, i.e. I(V ′)∩k[x1, . . . , xm] 6=
{0}. By Claim 2, there exists r > m such that all polynomials in I(V ′)∩k[x1, . . . , xr−1, xr]
vanish modulo I(V ′)∩k[x1, . . . , xr−1]. Then the equivalent class [xr] ∈ k[x1, . . . , xt]/I
is not integral over k[x1, . . . , xm], otherwise there were a polynomial p[x1, . . . , xm, xr] ∈
I ⊂ |(V ′) that is monic in xr, so its leading coefficient 1 cannot vanish modulo
I(V ′) ∩ k[x1, . . . , xr−1]. Thus {x1, . . . , xt} is not in normal position w.r.t. V(I).

�


