
Lecture Notes 2.
MA 722

1 Positive Dimensional Varieties

Our main focus now is on polynomial systems which have positive dimen-
sional solutions. Solution of such systems first raises the question of how to
represent the roots. The most commonly used families to represent higher
dimensional varieties are as follows:

• Parametric equations

• Implicit equations, such as:

– Gröbner bases

– Triangular representation

– Rational univariate representation

• “Generic” points on the irreducible components

In this lecture note we concentrate on implicit representation of algebraic
varieties:

• We already learned about Gröbner bases. Here we will summarize
how to answer some geometric questions about varieties using Gröbner
bases.

• We will define triangular representations, and see what kind of geomet-
ric questions can be answered by them. We will also outline a method,
named after Wu, to compute triangular representation which is usually
more efficient than Gröbner basis computation.

• As a special case of triangular representation we will define rational
univariate representation, and see when it can be applied.

We will follow the approach in [CLO97, Chapter 6].
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2 Representation by Gröbner bases

In this section we give a method using Gröbner bases to decide whether a
polynomial vanishes on an algebraic variety. We will use the fact (proved in
the last lecture notes) that the division algorithm for Gröbner bases solves
the ideal membership problem.

Problem 2.1 (Radical Membership Problem). Given

h1(x1, . . . , xn) = 0
...

ht(x1, . . . , xn) = 0

and

g(x1, . . . , xn) = 0,

polynomials in k[x1, . . . , xn]. Question: Does g = 0 follow strictly from
h1, . . . , ht, i.e. does g vanish whenever h1, . . . , ht vanish?

The following solution works if k is algebraically closed:

Solution. Assume that k is algebraically closed and let V := V(h1, . . . , ht).
Then g = 0 strictly follows from h1, . . . , hn if and only if g ∈ I(V ). There-
fore, by Hilbert’s Nullstellensatz, we have that g = 0 strictly follows from
h1, . . . , hn if and only if

∃ m ≥ 1 such that gm ∈ 〈h1, . . . , ht〉.

In the next proposition we will prove that this is equivalent to

1 ∈ 〈h1, . . . , ht, 1− yg〉 ⊆ k[x1, . . . , xn, y].

Now
1 ∈ 〈h1, . . . , ht, 1− yg〉

can be decided by computing a Gröbner basis for the ideal 〈h1, . . . , ht, 1 −
yg〉 ⊆ k[x1, . . . , xn, y].

Proposition 2.2. Let h1, . . . ht, g be as above. Then

∃ m ≥ 1 such that gm ∈ 〈h1, . . . , ht〉

if and only if

1 ∈ 〈h1, . . . , ht, 1− yg〉 ⊆ k[x1, . . . , xn, y].
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Proof. To prove the equivalence, on one hand, if gm ∈ 〈h1, . . . , hn〉 then

1 = ymgm + (1− ymgm) = ymgm + (1− yg)(1 + yg + . . . ym−1gm−1)

and the right hand side is in 〈h1, . . . , hn, 1− yg〉. On the other hand, assume
that

1 =
t∑

i=1

pihi + q(1− yg)

for some pi, q ∈ k[x1, . . . , xn, y]. Set y = 1/g, so we get

1 =
t∑

i=1

pi(x1, . . . , xn, 1/g)hi.

Let m := maxi(degy(pi)). Then multiplying both sides of the equation by
gm we clear all denominators, and get

gm =
t∑

i=1

Aihi

where Ai ∈ k[x1, . . . , xn]. This proves the equivalence.

3 Triangular Representation

3.1 Motivation

The following simple example is in Automatic Geometric Theorem Proving:
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Example 3.1. Let A,B,C,D be the vertices of a parallelogram in the plane.
We will prove using coordinate geometry that the two diagonals AD and BC
of any parallelogram intersects at a point N which bisects the diagonals, i.e.
‖AN‖ = ‖DN‖ and ‖BN‖ = ‖CN‖.

We place the parallelogram in a coordinate system such that we have
A = (0, 0), B = (u1, 0), and C = (u2, u3), where u1, u2, u3 are “free” variables.
Since D is uniquely determined by A,B,C, we give coordinates D = (x1, x2),
where x1, x2 are “dependent” variables, and introduce the equations:

x2 = u3 and
u3
u2

=
x2

x1 − u1
.

To get polynomial equations, we multiply both sides by the product of the
denominators. The intersection N of the diagonals is also uniquely deter-
mined by A,B,C,D, and introducing the dependent variables x3, x4 for its
coordinates we get the following equations from the collinearity of A,N,D
and B,N,C, respectively:

x4
x3

=
u3
x1

and
x4

u1 − x3
=

u3
u1 − u2

.

Again, we will clear denominators. The claim ‖AN‖ = ‖DN‖ can be ex-
pressed by the equations

x23 + x24 = (x3 − x1)2 + (x4 − x2)2.

Therefore, we have a system

h1 := x2 − u3
h2 := (x1 − u1)u3 − x2u2
h3 := x4x1 − x3u3
h4 := x4(u2 − u1)− (x3 − u1)u3
g := x23 + x24 − (x3 − x1)2 − (x4 − x2)2.

If we could prove that g = 0 whenever h1, . . . , h4 vanishes, then we proved
the claim. However,

1 6∈ 〈h1, h2, h3, h4, 1− yg〉.

What is wrong here? The claim is still true!
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The reason why the Radical Ideal Membership Problem does not apply
here is as follows:

V(h1, h2, h3, h4) = V ′ ∪ U1 ∪ U2 ∪ U3

where
V ′ = V (x1 − u1 − u2, x2 − u3, 2x3 − u1 − u2, 2x4 − u3)

and U1, U2, U3 correspond to degenerate cases

U1 = V(x2, x4, u3)

U2 = V(x1, x2, u1 − u2, u3)
U3 = V(x1 − u2, x2 − u3, x3u3 − x4u2, u1).

It is easy to see that g vanishes on V ′ but doesn’t vanish on U1, U2, U3 (for
example g becomes 2x1x3 − x21 6= 0 on U1).

In the next definitions we will capture the property that g vanishes on the
non-degenerate components but does not necessarily vanish on the degenerate
components.

Definition 3.2. Let W be an irreducible variety in the affine space kn+m

with coordinates u1, . . . , um, x1, . . . , xn. We say that the functions u1, . . . , um
are algebraically independent on W if no non-zero polynomial in k[u1, . . . , um]
vanishes identically on W , i.e. I(W ) ∩ k[u1, . . . , um] = {0}.

Definition 3.3. Let

h1(u1, . . . , um, x1, . . . , xn) = 0
...

hn(u1, . . . , um, x1, . . . , xn) = 0

and

g(u1, . . . , um, x1, . . . , xn) = 0,

be polynomials in k[u1, . . . , um, x1, . . . , xn]. We say that g follows generically
from h1, . . . , hn if

g ∈ I(V ′) ⊂ k[u1, . . . , um, x1, . . . , xn]

where V ′ is the union of the components of V(h1, . . . , hn) on which u1, . . . , um
are algebraically independent.
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In the next proposition we prove that over algebraically closed fields we
can decide whether g follows generically from h1, . . . , hn without computing
the irreducible decomposition of V(h1, . . . , hn).

Proposition 3.4. Let k be an algebraically closed field. Let h1, . . . , hn and
g be as above. Then g follows generically from h1, . . . , hn if and only if there
exists c(u1, . . . , um) ∈ k[u1, . . . , um] such that

cg ∈
√
〈h1, . . . , hn〉 ⊂ k[u1, . . . , um, x1, . . . , xn].

Proof. ⇐ Denote V = V(h1, . . . , hn) and let W be an irreducible component
of V ′. Since cg ∈

√
〈h1, . . . , hn〉, thus cg vanishes on V , which contains W .

Thus cg ∈ I(W ). Since W is irreducible, therefore I(W ) is prime, thus either
c ∈ I(W ) or g ∈ I(W ). However, c ∈ I(W ) would imply that u1, . . . , um
is not algebraically independent over W , so we have that g ∈ I(W ). This
implies that g ∈ I(V ′) as was claimed. (Note that for this direction we didn’t
use that k is algebraically closed.)
⇒ Assume that g ∈ I(V ′). Let V = V ′ ∪ U1 ∪ · · · ∪ Uk where u1, . . . , um
are algebraically dependent over Ui for i = 1 . . . , k. Thus there exists
ci ∈ k[u1, . . . , um] such that ci ∈ I(Ui) for i = 1 . . . , k. If we define c :=∏k

i=1 ci then cg ∈ I(V ). Using Hilbert’s Nullstellensatz we get that cg ∈√
〈h1, . . . , hn〉.

Using the next proposition we can reduce the computation of whether g
follows generically from h1, . . . , hn to the radical ideal membership problem.

Proposition 3.5. Let h1, . . . , hn and g be as above. Then the following are
equivalent:

(i) ∃ c ∈ k[u1, . . . , um] such that cg ∈
√
〈h1, . . . , hn〉.

(ii) g ∈
√
H where H is the ideal generated by h1, . . . , hn in the ring

k(u1, . . . um)[x1, . . . , xn]. (Note that k(u1, . . . um) denotes the fraction
field of k[u1, . . . um], and in k(u1, . . . um)[x1, . . . , xn] the variables u1, . . . , um
are considered as part of the coefficients of polynomials in x1, . . . , xn.)

(iii) 1 ∈ 〈h1, . . . , hn, 1− yg〉 ⊆ k(u1, . . . um)[x1, . . . , xn, y].
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Proof. (ii)⇔(iii) follows from Proposition 2.2.
(i)⇒(ii) is true since if (cg)m =

∑n
i=1Aihi for someAi ∈ k[u1, . . . um, x1, . . . , xn]

then gm =
∑n

i=1
Ai

cm
hi where Ai/c

m ∈ k(u1, . . . um)[x1, . . . , xn].
(ii)⇒(i) is true since if gm =

∑n
i=1Bihi for some Bi ∈ k(u1, . . . um)[x1, . . . , xn]

and c is the least common multiple of the denominators of the Bi’s, then
(cg)m =

∑n
i=1B

′
ihi and B′i has no denominators.

3.2 Pseudo-division

Next we describe an alternative to computing Gröbner bases, the so called
Wu’s method to compute a triangular representation of an affine variety,
which allows to decide if a polynomial vanishes generically over the variety.
Wu’s method is usually more efficient than computing Gröbner bases.

The first ingredient of Wu’s method is a version of the multivariate divi-
sion with remainder, known as “pseudo-division”. Let f, g ∈ k[x1, . . . , xn, y]
and we consider them as univariate polynomials in the variable y with coef-
ficients depending on x1, . . . , xn. The main idea of the pseudo-division is to
imitate the univariate division with remainder algorithm. However, in the
univariate case we can only make division if we are allowed to divide by the
leading coefficient of g. In order to avoid division by polynomials in the mul-
tivariate case, in the pseudo-division algorithm we allow to multiply f by a
sufficiently large power of the leading coefficient of g. We have the following
algorithm:

Pseudo-division
Input: f = apy

p + ap−1y
p−1 + · · · + a0 and g = bsy

s + bs−1y
s−1 + · · · + b0,

where ai, bj ∈ k[x1, . . . , xn], s ≤ p, and bs 6= 0.
Output: q, r ∈ k[x1, . . . , xn, y] such that there exists m ≤ p − s + 1 such
that

bms f = qg + r

and either r = 0 or degy(r) < degy(g).

r := f ; q := 0;

WHILE r 6= 0 AND degy(r) ≥ s DO

r := bsr − LCy(r)gy
degy(r)−s;
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q := bsq + LCy(r)gy
degy(r)−s;

Correctness. Note that in the above algorithm we denoted by degy(r) the
degree of r in the variable y and by LCy(r) the leading coefficient of r as
a polynomial in y. The WHILE loop is executed at most p − s + 1 times,
therefore the power m in bms f = qg + r can be chosen as m ≤ p = s + 1.
The rest of the proof follows easily from the construction. Note that since
r = bms f − qg, therefore r ∈ 〈f, g〉.

Definition 3.6. The polynomials r and q in the pseudo-division algorithm
are called pseudo-remainder and pseudo-quotient, and denoted by prem(f, g, y)
and pquo(f, g, y), respectively.

Remark 3.7. Another interpretation of the pseudo-division algorithm is to
conduct the usual univariate division with remainder of f by g in the ring
k(x1, . . . , xn)[y] and then multiply the results by the least common multiple
of the denominators. It is easy to see that the denominators are powers of
LCy(g).

Example 3.8. Let f = x2y3 − y and g = x3y − 2. Then we have

(x3)3f = (x8y2 + 2x5y + 4x2 − x6)g + 8x2 − 2x6.

3.3 Wu’s Method

Let us get back to the problem of deciding whether g follows generically
from h1, . . . , hn for h1, . . . , hn, g ∈ k[u1, . . . , um, x1, . . . , xn]. Recall that V ′ is
the union of the components of V = V(h1, . . . , hs) such that u1, . . . , um are
algebraically independent over them. The first, elementary version of Wu’s
method that we present here assumes that V ′ is irreducible.

Wu’s method consists of two main steps: First to compte a “triangular
set” {f1, . . . , fn} for h1, . . . , hn, where fi ∈ [u1, . . . , um, x1, . . . , xi]. Secondly,
using successive pseudo-division of g by f1, . . . , fn, we will be able to decided
whether g follows generically from h1, . . . , hn. More precisely:

Step 1. Reduction to triangular form
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Below we outline the algorithm. We work on one variable at a time start-
ing with xn.

Triangularization
Input: Hn := {h1, . . . , hn} ∈ k[u1, . . . , um, x1, . . . , xn]
Output: f1, . . . , fn such that fi ∈ [u1, . . . , um, x1, . . . , xi] and

V ′ ⊆ V ⊆ V (f1, . . . , fn).

1. Let S ⊂ {h1, . . . , hn} be the set of polynomials containing the variable
xn, and let Hn−1 := Hn − S.

2. If S = ∅ then ERROR(Probably no component with u1, . . . , um alge-
braically independent);

3. If |S| = 1 then let fn be the polynomial in S, and continue for n− 1.

4. If |S| ≥ 2 then do

While |S| ≥ 2 pick a, b ∈ S such that degxn
(a) ≥ degxn

(b);

S := S − {a};
r := prem(a, b, xn);

If r = 0 then ERROR(V ′ is probably reducible);

If degxn
(r) > 0 then S := S ∪ {r} else Hn−1 = Hn−1 ∪ {r};

Correctness. Throughout the algorithm we maintain that |Hn−1 ∪ S| = n,
otherwise we return an ERROR message. Since |S| = 1 when we go to the
n− 1 case, thus |Hn−1| = n− 1 and the induction hypothesis is maintained.
Also, the polynomials both in S and Hi−1 are in the ideal 〈h1, . . . , hn〉 ⊂
k[u1, . . . , um, x1, . . . , xn], since they are pseudo-remainders of polynomials in
this ideal. This implies that V ′ ⊆ V ⊆ V(f1, . . . , fn). Note that the output
of the above algorithm is not unique, it depends on the order we chose the
elements a, b ∈ S.

Example 3.9. We continue the example on the parallelogram, i.e.

h1 := x2 − u3
h2 := (x1 − u1)u3 − x2u2
h3 := x4x1 − x3u3
h4 := x4(u2 − u1)− (x3 − u1)u3.
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We have two polynomials which contain the variable x4, therefore S :=
{h3, h4}. Then

r := prem(h4, h3, x4)

= (u2 − u1)x1x4 − (u2 − u1)x3u3 − x1x4(u2 − u1) + x1(x3 − u1)u3
= x1x3u3 − x1u1u3 + x3u3u1 − x3u3u2.

Thus, H3 = {h1, h2, r} and f4 := h3. We continue for n = 3. Since there is
only one polynomial in H3 depending on x3, therefore we define f3 := r and
H2 := {h1, h2}. For n = 2 we compute

r := prem(h2, h1, x2) = x1u3 − u1u3 − u2u3.

Thus f2 := h1 and f1 := x1u3 − u1u3 − u2u3 gives a triangular set. Note
that V(u3, x2, x1) ⊂ V(f1, f2, f3, f4) but V(u3, x2, x1) 6⊂ V , therefore, V 6=
V(f1, f2, f3, f4).

Step 2. Successive pseudo-division

Assume that we are given a triangular set {f1, . . . , fn}, where fi ∈
k[u1, . . . , um, x1, . . . , xi], and g ∈ k[u1, . . . , um, x1, . . . , xn]. We define the
sequence

Rn−1 := prem(g, fn, xn)

Rn−2 := prem(Rn−1, fn−1, xn−1)
...

R1 := prem(R2, f2, x2)

R0 := prem(R1, f1, x1).

Then the following theorem holds:

Theorem 3.10. Let {f1, . . . , fn} and g be as above. Let

di := LCxi
(fi) ∈ k[u1, . . . , um, x1, . . . , xi−1]

be the leading coefficient of fi for i = 1, . . . , n. Then
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(i) there exist R0, s1, . . . , sn ∈ N and A1, . . . , An ∈ k[u1, . . . , um, x1, . . . , xn]
such that

ds11 · · · dsnn g = A1f1 + · · ·+ Anfn +R0,

degxi
(R0) < degxi

(fi) i = 1, . . . , n.

(ii) If R0 = 0 then g is zero at every point of V(f1, . . . , fn) −V(
∏n

i=1 di),
and in particular at the points of V ′ −V(

∏n
i=1 di).

Proof. (i) By the pseudo-division algorithm there exist sn and qn such that

Rn−1 = dsnn g − qnfn.

Similarly,

Rn−2 = d
sn−1

n−1 (dsnn g − qnfn)− qn−1fn−1 = d
sn−1

n−1 d
sn
n g − qn−1fn−1 − q′nfn.

Therefore, by induction we get that

R0 = ds11 · · · dsnn g − (A1f1 + · · ·+ Anfn)

for some A1, . . . , An as claimed.
(ii) If R0 = 0 then ds11 · · · dsnn g vanishes on V(f1, . . . , fn). Thus if ξ ∈
V(f1, . . . , fn)−V(

∏n
i=1 di) then ds11 · · · dsnn (ξ) 6= 0, so g(ξ) must be zero.

Example 3.11. Continuing the previous example, we have

f1 = x1u3 − u1u3 − u2u3
f2 = x2 − u3
f3 = x3(x1u3 + u3u1 − u3u2)− x1u1u3
f4 = x4x1 − x3u3

and
g = x21 − 2x1x3 − 2x4x2 + x22.

We compute the successive pseudo-remainders:

R3 = x3(2x2u3 − 2x21) + x31 − x1x22
R2 = (x1u3 + u3u1 − u3u2)(x31 − x1x22) + (2x2u3 − 2x21)x1u1u3

R1 = x41u3 + x31u3u1 − x31u3u2 − x21u33 − x1u33u1 + x1u
3
3u2 + 2u33x1u1 − 2x31u1u3

= x41u3 − x31u3u1 − x31u3u2 − x21u33 + x1u
3
3u1 + x1u

3
3u2

R0 = R1 − (x31 − x1)f1 = 0.
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Since R0 = 0, the previous theorem asserts that g vanishes on V ′ minus the
points where any of the leading coefficients of f1, . . . , f4 vanish. Since

LCx1(f1) = u3, LCx2(f2) = 1, LCx3(f3) = (x1u3+u3u1−u3u2), LCx4(f4) = x1,

therefore

V(
4∏

i=1

LCxi
(fi)) ∩V(f1, . . . , f4) = V(u1u3(u1 + u2)).

This gives a proof of the original geometric theorem whenever u1, u3 and
u1 + u2 are not-zero.
Note that we could have simplified our computation if we “self-pseudo-
reduced” our triangular set, and if we divided out the common denomi-
nators of the coefficients f1, . . . , f4 as polynomials in x1, . . . , x4. By this
self-reduction we get the following triangular set:

f ′1 = x1u3 − u1u3 − u2u3
f ′2 = x2 − u3
f ′3 = (2u3u2)x3 − x1u1u3
f ′4 = (u1u3 + u2u3)x4 − x3u23

Here all leading coefficients are polynomials in k[u1, u2, u3], so they cannot
vanish on the generic components V ′. Therefore g pseudo-reduces to 0 by
F = {f1, . . . , f4} if and only if g generically follows from F .

The following example demonstrates that it is not always possible to find
triangular sets such that the leading coefficients do not vanish over the generic
components.

Example 3.12. This example is a zero dimensional ideal, so m = 0, no free
variables. Let

F = {x21 − x1, x1x22 − 3x2 + 2}.
F is a triangular set, and LCx1(f1) = 1, LCx2(f2) = x1. In this case

V(LC(f1)LC(f2)) ∩V(f1, f2) = V(x1,−3x2 + 2) = {(0, 2/3)},

which is a proper subset of V (F ) = {(0, 2/3), (1, 1), (1, 2)}. This also implies
that there are polynomials g which identically vanish on V (F ), but do not
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pseudo-reduce to 0, e.g. g = (x21− x1)x22, which reduces to (x1− 1)(3x2− 2).
Note that there is no triangular set in this coordinate system that would
represent V (F ). However, a linear change of variables remedies the situation,
for example, by switching x1 and x2 we get a triangular set with constant
leading coefficients

{−4 + 12x2 − 11x22 + 3x32, 9x22 + 14− 27x2 + 4x1}.

This will be the subject of the next lecture notes on Geometric Representa-
tion.

Another kind of remedy for the situation in the previous example is a
decomposition algorithm, called Ritt-Wu decomposition. The precise de-
scription of the Ritt-Wu decomposition is out of the scope of these lecture
notes, so we just mention the main ideas here.

In order to eliminate the problem of vanishing leading coefficients over
generic components, we will need to decompose V ′ = V1 ∪ · · · ∪ Vk into
components such that each component will be represented by a triangular
set, and the leading coefficients of the polynomials in the triangular sets will
only depend on the free variables u1, . . . , um, thus do not vanish identically
over any of the generic components.

The main idea of the Ritt-Wu decomposition algorithm is the following.
We take the leading coefficient dn of fn and decompose the variety corre-
sponding to Hn−1 into components where dn vanishes identically, and into
irreducible components where it doesn’t vanish identically. Over the first
group of components we simply add the equation dn = 0, and over the sec-
ond group of components we can compute the “pseudo inverse” of dn, i.e.
polynomials en ∈ k[u1, . . . , um, x1, . . . , xn−1] and cn ∈ k[u1, . . . , um] such that
endn ≡ cn over that component, thus the leading coefficient of enfn is in
k[u1, . . . , um] over that irreducible component.
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