
Lecture Notes 1.
MA 722

1 Algebra-Geometry Dictionary

This section summarizes the most basic facts you need to know from alge-
braic geometry. We follow the approach of [CLO97, Chapters 1 and 4].

Definition 1.1. Let k be a field and f1, . . . , fs be polynomials in k[x1, . . . , xn].
We call

V(f1, . . . , fs) := {~z = (z1, . . . , zn) ∈ kn : fi(~z) = 0 i = 1, . . . , s}

the affine variety in kn defined by f1, . . . , fs.

The following proposition implies that if V and W are affine varieties,
then so is V ∩W and V ∪W .

Proposition 1.2. Let V = V(f1, . . . , fs) and W = V(g1, . . . , gt). Then

V ∩W = V(f1, . . . , fs, g1, . . . , gt)

V ∪W = V(figj : i = 1 . . . s, j = 1 . . . t)

Proof. The claim for V ∩W is easy to check. To prove the second claim, first
observe that V ⊆ V(figj) and W ⊆ V(figj), therefore V ∪W ⊆ V(figj). On
the other hand, let ~z ∈ V(figj). If ~z ∈ V then we are done. Otherwise, there
exists i∗ such that fi∗(~z) 6= 0. But for all j = 1, . . . , t we have fi∗gj(~z) = 0,
which implies that gj(~z) = 0 for all j, thus ~z ∈ W .

Example 1.3. (1) V(x2+y4−4)∩V(xy−1) = V(x2+y4−4, xy−1) ⊂ R2 is
the 4 intersection points of the circle of radius 2 and the hyperbola. Another
representation of the same set is V(x4 − 4x2 + 1, xy − 1).
(2) V((x − 2)(x2 − y), (x2 − y)y, (z + 1)(x2 − y)) ⊂ R3 is the union of the
point V(x − 2, y, z + 1) = {(2, 0, 1)} and the surface V(y − x2). This is an
example of a system where 3 equations in 3 variables can have common roots
of isolated points as well as higher dimensional components.
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Generally, numerical methods handle systems which have no root mul-
tiplicities or other singularities. The symbolic methods we study here also
solve systems which have singularities. More precisely, the questions we try
to answer are the following:

a. Consistency: Is V(f1, . . . , fs) = ∅?

b. Finiteness: Is the set V(f1, . . . , fs) has finite cardinality? If yes, give
all solutions.

c. Dimension: What is the dimension of V(f1, . . . , fs)? Find represen-
tations of the ≥ 1 dimensional components.

To characterize affine varieties algebraically, we define a correspondence
between affine varieties in kn and ideals in k[x1, . . . , xn].

Definition 1.4. Let V ⊂ kn be an affine variety, and define

I(V ) := {f ∈ k[x1, . . . , xn] : f(~z) = 0 ∀~z ∈ V }.

Then I(V ) is an ideal in k[x1, . . . , xn].
Let I ⊂ k[x1, . . . , xn] be an ideal. Define

V(I) := {~z ∈ kn : f(~z) = 0 ∀f ∈ I}.

Note that the above correspondence is inclusion reversing, i.e.

V ⊂ W ⇒ I(W ) ⊂ I(V )

I ⊂ J ⇒ V(J) ⊂ V(I).

However, the above correspondence is not a bijection, different ideals can
define the same affine variety. For example, V(1) = V(1 + x2) = ∅ in R2, or
V(x − 1) = V(x2 − 2x + 1) = {1}. The next theorem clarifies the situation
about consistency of polynomials, at least over algebraically closed fields. We
do not give proof here.

Theorem 1.5 (Weak Nullstellensatz). Let k be an algebraically closed field,
I ⊂ k[x1, . . . , xn]an ideal such that V(I) = ∅. Then I = k[x1, . . . , xn], i.e.
1 ∈ I.

2



The next theorem (again, without proof) is the stronger version of the
Nullstellensatz:

Theorem 1.6 (Hilbert’s Nullstellensatz). Let k be an algebraically closed
field. Then f, f1, . . . , fs ∈ k[x1, . . . , xn] satisfy

f ∈ I(V(f1, . . . , fs))

if and only if there exists m ≥ 1 such that

fm ∈ 〈f1, . . . , fs〉,

where 〈f1, . . . , fs〉 denotes the ideal generated by f1, . . . , fs.

The property described in Hilbert’s Nullstellensatz motivates the follow-
ing definition:

Definition 1.7. Let I ⊂ k[x1, . . . , xn] be an ideal. The radical of I is defined
by √

I := {f ∈ k[x1, . . . , xn] : ∃m fm ∈ I}.

An ideal J is called a radical ideal if
√
J = J .

Another way to state Hilbert’s Nullstellensatz is as follows: If k is alge-
braically closed, then for any ideal J ⊂ k[x1, . . . , xn]

I(V(J)) =
√
J.

Therefore, if k is algebraically closed, we get the following inclusion-reversing
bijection:

affine varieties ↔ radical ideals .

Next we study irreducible varieties and their corresponding prime ideals.

Definition 1.8. V ⊂ kn affine variety is irreducible if whenever V = V1∪V2,
where V1 and V2 are affine varieties, then either V1 = V or V2 = V .

To decide whether an affine variety is irreducible we need the following
algebraic characterization of irreducibility:

Definition 1.9. An ideal I ⊂ k[x1, . . . , xn] is a prime ideal, if whenever
f, g ∈ k[x1, . . . , xn] and fg ∈ I, then either f ∈ I or g ∈ I.
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The following proposition gives an other inclusion-reversing bijection be-
tween

irreducible varieties ↔ prime ideals.

Proposition 1.10. V ⊂ Kn is irreducible if and only if I(V ) is prime.

Proof. (⇒) Assume that V is irreducible and let fg ∈ I(V ). Let V1 :=
V ∩ V(f) and V2 := C ∩ V(g). Then V = V1 ∪ V2, and V1, V2 are affine.
Therefore V = V(f) or V = V(g), which implies that either f ∈ I(V ) or
g ∈ I(V ).
(⇐) Assume that I(V ) is prime. Let V = V1 ∪ v2 and suppose that V 6=
V1. We claim that I(V ) = I(V2). On one hand, since V2 ⊆ V , therefore
I(V ) ⊆ I(V2). On the other hand, let g ∈ I(V2). Since V 6= V1, there exist
f ∈ I(V1)− I(V ). Since V = V1 ∪ V2, we have fg ∈ I(V ). But since I(V ) is
prime, either f ∈ I(V ) or g ∈ I(V ). Since f 6∈ I(V ), we get that g ∈ I(V ).
This proves that I(V2) ⊆ I(V ). Therefore, we can conclude that V = V2.

Example 1.11. If k is an infinite field and V ⊂ kn is an affine variety given
parametrically by

x1 = f1(t1, . . . , tm), . . . , xn = fn(t1, . . . , tn)

where fi ∈ k[t1, . . . , tm], then V is an irreducible variety.

Finally, we define maximal ideals:

Definition 1.12. An ideal I ⊂ k[x1, . . . , xn] is a maximal ideal, if I 6=
k[x1, . . . , xn] and whenever I ⊆ J for some ideal J , then either J = I or
J = k[x1, . . . , xn].

Example 1.13. The ideal

I = 〈x1 − a1, x2 − a2, . . . , xn − an〉 ⊂ k[x1, . . . , xn]

is maximal, where a1, . . . , an ∈ k. (Prove it!)

Proposition 1.14. Every maximal ideal is prime. (The converse is not
true.)
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Proof. Assume that I is not prime, i.e. let fg ∈ I such that f 6∈ I and
g 6∈ I. Consider J := 〈f, I〉, the ideal generated by f and I. Then J strictly
contains I, since f 6∈ I. If J = k[x1, . . . , xn], then 1 ∈ J , so 1 = cf + h for
some h ∈ I, and c ∈ k[x1, . . . , xn]. But the g = gcf + gh ∈ I, which we
assumed to be not the case. Therefore, J 6= k[x1, . . . , xn]. Thus i cannot be
a maximal ideal, since J is a proper ideal containing it.

The next theorem gives our last bijection for algebraically closed fields:

points ↔ maximal ideals.

Theorem 1.15. If k is an algebraically closed field, then every maximal ideal
in k[x1, . . . , xn] is of the form 〈x1 − a1, x2 − a2, . . . , xn − an〉.

Proof. Let I ⊂ k[x1, . . . , xn] be a maximal ideal. Since I 6= k[x1, . . . , xn],
by the Weak Nullstellensatz V(I) 6= ∅. Let ~a = (a1, . . . , an) ∈ V(I). Then
I(V(I)) ⊆ I({~a}). Using Hilbert’s Nullstellensatz we have I(V(I)) =

√
I.

Since I is maximal, it is prime, and it is easy to check from their definition
that prime ideals are radical, thus

√
I = I. Thus, I ⊆ I({~a}). But I({~a}) 6=

k[x1, . . . , xn], so I = I({~a}).

To summarize, in this section we established the following dictionary
between algebra and geometry for the case when k is algebraically closed:

affine varieties ↔ radical ideals

irreducible varieties ↔ prime ideals

points ↔ maximal ideals.

2 Gröbner basis

Motivation: As we have seen in the Example 1.3, ideals can be given by
various sets of generating polynomials: some are more useful to answer our
basic geometric questions than others. Gröbner bases are special sets of
generators of ideals with the property that there is a simple algorithmic way
– division with remainder – to decide whether a given polynomial is in the
ideal or not. This decision problem is called the ideal membership problem.
We have already seen that the Consistency Problem over algebraically closed
fields is equivalent to deciding whether 1 is in the ideal. We will see at the
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end of this section that many more geometric questions can be answered
using Gröbner bases. In particular we will be able to solve any systems of
equations if we have a Gröbner basis.

We follow the approach of [CLO97, Chapter 2].

2.1 Monomial Orderings and the Division Algorithm

Before we discuss the multivariate construction, let us recall the division with
remainder algorithm in the univariate case, using an example.

Example 2.1. Let f(x) = x3 + 1− 2x and g(x) = 2− 2x2 − x. In order to
divide f by g we

1. Arrange the terms of f and g in a decreasing order of degrees.

2. If the leading term of g divides the leading term of f then find the
quotient, in this case x3 /(−2x2) = −1

2
x. Otherwise return f .

3. Repeat the same process for f(x)− (−1
2
x)g(x). Note that the leading

term of f(x) is cancelled in f(x) + 1
2
xg(x) = −1

2
x2 − x+ 1.

Note that in the univariate case, every ideal is generated by one polynomial,
namely, by the greatest common divisor of the generators. Once this greatest
common divisor is computed, ideal membership can be decided using the
division with remainder algorithm.

In the multivariate case the degree of the terms do not give a total order
on the monomials. However, once we define an ordering on the monomials
satisfying certain natural conditions, we can easily generalize the univariate
division with remainder algorithm, as we will see at the end of this subsection.
However, as we will also see, having a division with remainder algorithm is
still not sufficient to solve the ideal membership problem in the multivariate
case.

Definition 2.2. Monomials are denoted by xα := xα1
1 x

α2
2 · · ·xαn

n . Each
monomial is uniquely determined by its vector of exponents α = (α1, . . . , αn) ∈
Nn, thus defining ordering on the monomials or on Nn is equivalent. We will
use the notation α � β and xα � xβ interchangeably.
A monomial ordering � is a total order on Nn satisfying
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(i) α � β ⇒ α + γ � β + γ for all γ ∈ Nn

(ii) Any S ⊆ Nn has a least element.

Definition 2.3. The following are the most commonly used monomial or-
derings:

Lexicographic Order: α �lex β if in α − β the leftmost non-zero entry is
positive.

Graded Lex Order: α �grlex β if |α| > |β|, or if |α| = |β| then α �lex β.
Here |α| =

∑n
i=1 αi, and similarly for |β|.

Graded Reverse Lex Order: α �grevlex β if |α| > |β|, or if |α| = |β| then
in α− β the rightmost non-zero entry is negative.

Example 2.4. Consider the set

{xyz2, x3, y4, x2y2, xy2z}.

Assuming that x � y � z, i.e. the exponent of x is the leftmost entry and
the exponent of z is the rightmost entry in the exponent vector, the above
orderings of the set are the following:

lex : x3 � x2y2 � xy2z � xyz2 � y4

grlex : x2y2 � xy2z � xyz2 � y4 � x3

grevlex : x2y2 � y4 � xy2z � xyz2 � x3.

We will use the following terminology.

Definition 2.5. Let f =
∑

α∈Nn cαx
α ∈ k[x1, . . . , xn] and let � be a mono-

mial order.

• The leading exponent of f is

LE(f) := max(α ∈ Nn : cα 6= 0).

Here the maximum is taken with respect to �.

• The leading coefficient of f is

LC(f) := cLE(f) ∈ k.
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• The leading monomial of f is

LM(f) := xLE(f).

• The leading term of f is

LT(f) := LC(f) · LM(f).

Now we are ready to present the division algorithm.

Multivariate Division with Remainder
Input: f1, . . . , fs, f ∈ k[x1, . . . , xn] and a monomial order �.
Output: q1, . . . , qs, r ∈ k[x1, . . . , xn] such that

f =
s∑
i=1

qifi + r

and no monomials in r are divisible by LT(f1), . . . ,LT(fs). Moreover, if
qifi 6= 0 then LE(f) � LE(qifi).

qi := 0 for i = 1 . . . s; r := 0; p := f ;
WHILE p 6= 0 DO

i := 1; flag := false;
WHILE i ≤ s AND flag = false DO

IF LT(fi) divides LT(P ) THEN
qi := qi + LT(p)/LT(fi);

p := p− (LT(p)/LT(fi)) · fi;
flag := true;

ELSE i := i+ 1;

IF flag = false THEN

r := r + LT(p);

p := p− LT(p).

Proof of correctness (outline). We can prove by induction that each time we
pass through the main WHILE loop, the following holds:
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(i) LE(f) � LE(p) and f = p+
∑s

i=1 qifi + r.

(ii) If qi 6= 0 then LE(f) � LE(qifi).

(iii) No term in r is divisible by any of LT(fi).

Moreover, the algorithm terminates, since LE(p) is strictly decreasing each
time we pass through the main WHILE loop, and by the properties of the
monomial ordering, there is no infinite subset of strictly decreasing monomi-
als.

2.2 Definition and Properties of Gröbner Bases

Unfortunately, in the multivariate case the division algorithm does not answer
the ideal membership problem. For example, if I = 〈x2 + 1, xy − 1〉, then
x+y = y(x2+1)−x(xy−1) ∈ I, but the according to the division algorithm,
the remainder of x + y is itself. Gröbner bases are generator sets of ideals
such that ideal membership can be detected using the division algorithm.

In this subsection we assume that a monomial order � is fixed.
First we define ideals generated by the leading terms of an ideal. It is

easy to see that deciding membership in ideals generated by monomials –
called monomial ideals – is a simple application of the division algorithm.

Definition 2.6. Let I ⊂ k[x1, . . . , xn] be an ideal not equal {0}. We denote
by

LT(I) := {LT(f) : f ∈ I}

the set of leading terms of elements of I. Since this is not an ideal, we denote
〈LT(I)〉 the ideal generated by LT(I) in k[x1, . . . , xn].

We are ready to define Gröbner bases.

Definition 2.7. A finite subset G = {g1, . . . , gs} ⊂ k[x1, . . . , xn] of an ideal
is a Gröbner basis of I w.r.t. � if

〈LT(g1), . . . ,LT(gs)〉 = 〈LT(I)〉.

The following existence theorem is stated here without proof.
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Theorem 2.8. Every ideal I ⊂ k[x1, . . . , xn] other than {0} has a Gröbner
basis w.r.t. �. Furthermore, the elements of a Gröbner basis for I form a
generating set for I.

Example 2.9. Let I = 〈x2 + 1, xy − 1〉, and let � be the lexicographic
ordering such that y � x. Then clearly {x2 + 1, xy − 1} is not a Groebner
basis, since LT(x + y) = y ∈ 〈LT(I)〉, as we have seen above, however
y 6∈ 〈x2, xy〉. In fact, G = {x2 + 1, xy − 1, y + x} forms a Gröbner basis for
I. One can also simplify G.

The first property we prove is that the division algorithm produces a
unique remainder for Gröbner bases.

Proposition 2.10. Let G = {g1, . . . , gs} be a Gröbner basis for an ideal I.
Let f ∈ k[x1, . . . , xn]. Then there exists a unique r ∈ k[x1, . . . , xn] such that

(i) no term of r is divisible by any of LT(g1), . . . ,LT(gs),

(ii) f = g + r for some g ∈ I.

In particular, R is the remainder on division of f by G, independently of the
order of elements in G.

Proof. The output specification of the division algorithm proves the existence
of r. To prove uniqueness, assume that f = g1+r1 = g2+r2 satisfy (i) and (ii).
Then r1− r2 = g1− g2 ∈ I, so LT(r1− r2) ∈ 〈LT(I)〉 = 〈LT(g1), . . . ,LT(gs)〉.
Since LT(g1), . . . ,LT(gs) and LT(r1−r2) are all single terms, there must exist
LT(gi) which divides LT(r1 − r2). But this is impossible, since no term of
r1 and r2 are divisible by any of LT(g1), . . . ,LT(gs). Thus r1 − r2 must be
zero.

Corollary 2.11. Let G = {g1, . . . , gs} be a Gröbner basis for an ideal I, and
let f ∈ k[x1, . . . , xn]. Then f ∈ I if and only if the remainder on division of
f by G is zero.

The next property gives an efficient way to check that a set of polynomials
forms a Gröbner basis. First we need the definition of S-polynomials.

Definition 2.12. Let f, g ∈ k[x1, . . . , xn] be non-zero polynomials. The
S-polynomial of f and g is the combination

S(f, g) =
xγ

LT(f)
· f − xγ

LT(g)
· g,
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where xγ = LCM(LT(f),LT(g)) the least common multiple of the leading
terms.

An S-polynomial cancels the smallest common leading term of multiples
of f and g.

Example 2.13. The S-polynomial of x2 + 1 and xy − 1 w.r.t. any ordering
is

x2y

x2
(x2 + 1)− x2y

xy
(xy − 1) = y(x2 + 1)− x(xy − 1) = y + x.

The next theorem is presented without a proof:

Theorem 2.14. Let I ⊂ k[x1, . . . , xn] be an ideal. Then a basis G =
{g1, . . . , gs} for I is a Gröbner basis for I if and only if for all pairs i 6= j,
the remainder on division of S(gi, gj) by G is zero.

The previous theorem gives the following simple (but not necessarily ef-
ficient) algorithm to compute a Gröbner basis, called Buchberger algorithm:

Buchberger’s Algorithm
Input: F = {f1, . . . , fs}ink[x1, . . . , xn] and � monomial ordering
Output: G = {g1, . . . , gt} a Gröbner basis for I = 〈f1, . . . , fs〉, with F ⊆ G

G := F ; G′ := {};
WHILE G′ 6= G DO

G′ := G;
FOR each pair {p, q}, p 6= q in G′ DO

S := S(p, q); S := remainder(S,G′);

IF S 6= 0 THEN G := G ∪ {S}
OD

OD

Proof of correctness. The following statements hold every time we pass through
the main loop:

1. G ⊂ I, since S ∈ I for all p, q ∈ I

2. F ⊂ G, thus G is a basis for I

3. G′ ⊆ G
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4. G = G′ ∪ {remainder(S(p, q), G′) : p 6= q ∈ G′}

This implies that G′ = G if and only if for all (p, q), p 6= q ∈ G′, S(p, q)
reduces to zero on division by G′. Therefore G′ = G is a Groebner basis.
The algorithm terminates, since if G′ 6= G then

〈LT(G′)〉  〈LT(G)〉

since the leading term of remainder(S(p, q), G′) is not divisible by any of
the elements in LT(G′). This implies that the ideals 〈LT(G′)〉 from suc-
cessive iterations of the main loop form an ascending chain of ideals in
k[x1, . . . , xn]. Using the so called Hilbert’s basis theorem stating that ev-
ery ideal in k[x1, . . . , xn] can be generated by finitely many polynomials,
one can prove that there is no infinite strictly ascending chain of ideals in
k[x1, . . . , xn].

Example 2.15. Let

I = 〈f1, f2〉 = 〈x3 − 2xy, x2y − 2y2 + x〉 ⊂ Q[x, y]

and we use the graded lexicographic order. Then G′ := {f1, f2} is not a
Gröbner basis for I, since S(f1, f2) = −x2 does not reduce to zero modulo
G′. Let

f3 := x2

and G := G′ ∪ {f3}. Second time around in the main loop of Buchberger’s
Algorithm we set G′ := G. Then S(f1, f2) = f3 clearly reduces to 0 modulo
G′, but S(f1, f3) = −2xy and S(f2, f3) = −2y2 + x do not. Let

f4 := 2xy and f5 := 2y2 − x

and G := G′ ∪ {f4, f5}. Again entering the main loop, we set G′ := G.
Now one can check that for all pairs in G′ the S-polynomial reduces to zero.
Therefore

G = {x3 − 2xy, x2y − 2y2 + x, x2, 2xy, 2y2 − x}
forms a Gröbner basis. Note that we can simplify G using the division
algorithm, and get a so called reduced Gröbner basis {x2, xy, y2 − x/2}

Definition 2.16. A Gröbner basis G ⊂ k[x1, . . . , xn] is called a reduced
Gröbner basis for I if
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(i) LC(g) = 1 for all g ∈ G

(ii) For all g ∈ G no monomials of g lies in 〈LT(G− {g})〉.

The next theorem asserts that reduced Gröbner bases exists and unique:

Theorem 2.17. Let I ⊂ k[x1, . . . , xn] be an ideal not eqaul to {0}. Then,
for a given monomial ordering, I has a unique reduced Gröbner basis.

Proof. The existence of reduced Gröbner bases follows from the following
algorithm to produce one: First note that if g ∈ G such that LT(g) ∈ 〈LT(G−
{g})〉, then G− {g} is also a Gröbner basis for I, so we can discard such g’s
from G. After doing that, for all g ∈ G we compute g′ := remainder(g,G−
{g}) and set G := G − {g} ∪ {g′}. The resulting set is a reduced Gröbner
basis for I.
To prove uniqueness, suppose that G and G̃ are reduced Gröbner bases for
I. One can show that this implies that

LT(G) = LT(G̃).

Thus, for each g ∈ G there exists g̃ ∈ G̃ such that LT(g) = LT(g̃). We will
show that g = g̃. Since g − g̃ ∈ I, and G is a Gröbner basis for I, g − g̃
reduces to zero modulo G. But none of the terms in g − g̃ is divisible by
any of the elements of LT(G)− {LT(g)} = LT(G̃)− {LT(g̃)}, and the term
LT(g) = LT(g̃) is cancelled in g− g̃. Therefore the division algorithm of g− g̃
by G will not change g − g̃. This implies that g − g̃ = 0.

Corollary 2.18. For a fixed monomial ordering, from the reduced Gröbner
bases we can decide if two ideals are equal.

Example 2.19. For a set of linear polynomials the reduced Gröbner basis
corresponds to the reduced row echelon form of the linear system.

2.3 Solving Polynomials Using Gröbner Bases

First we discuss how to solve systems using Gröbner bases w.r.t. the lexico-
graphic order. Gröbner bases w.r.t. the lexicographic order have the property
that the variables are eliminated successively. The order of elimination cor-
responds to the order of the variables in the lex ordering we used. A system

13



of equations in this form is easy to solve by back substitution, especially if
the last equations contains only one variable. More precisely, we have the
following theorem:

Theorem 2.20 (The Elimination Theorem). Let I ⊂ k[x1, . . . , xn] be an
ideal and let G be a Gröbner basis with respect to the lexicographic ordering
where x1 � x2 � · · · � xn. Then for any 1 ≤ i ≤ n the set

Gi := G ∩ k[xi+1, . . . , xn]

is a Gröbner basis for the elimination ideal

Ii := I ∩ k[xi+1, . . . , xn].

Proof. The crucial observation is that in the lex order with x1 � x2 �
· · · � xn, any monomial involving x1, . . . , xi is greater than all monomials in
k[xi+1, . . . , xn]. Therefore, if LT(g) ∈ k[xi+1, . . . , xn] then g ∈ k[xi+1, . . . , xn].
Thus, for all f ∈ Ii, if some g ∈ G LT(g) divides LT(f), then g must be in
Gi. This implies that 〈LT(Ii)〉 = 〈LT(Gi)〉.

Corollary 2.21. Let k be algebraically closed, and I ⊂ k[x1, . . . , xn] be an
ideal. Assume that V(I) ⊂ kn is a finite set. Then any Gröbner basis for I
with respect to the lexicographic ordering where x1 � x2 � · · · � xn contains
a univariate polynomial only depending on xn.

The next example demonstrates how to solve a polynomial system with
finitely many roots using lexicographic Gröbner bases:

Example 2.22. Let

f1 := x2 + y2 + z2 − 1 f2 := x2 + y2 − y f3 := x− z.

Then using the lex order with x > y > z we get that the Gröbner basis
consists of the polynomials

g1 := x− z g2 := −y + 2z2 g3 := z4 +
1

2
z2 − 1

4
.

Now one can use your favorite solver of univariate polynomials, for example
solving by radicals, to get

z = ±
√
±
√

5− 1.
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Back substituting these four values of z into the equations g2 = 0 and g1 = 0
– which are linear in y and x, respectively – we get the coordinates of the
four points in V(f1, f2, f3).

Unfortunately, in practice, the computation of the lex Gröbner basis is
the least efficient. Next we present a method to solve polynomial systems
with finitely many roots, given any Gröbner basis. The main idea behind
the method is to compute a set of multiplication matrices using the Gröbner
basis. We will show that the coordinates of the common roots of the system
are eigenvalues of the multiplication matrices.

We need some more definitions, first the definition of quotient rings:

Definition 2.23. The quotient of k[x1, . . . , xn] modulo the ideal I, written
k[x1, . . . , xn]/I, is the set of equivalence classes of congruence modulo I, i.e.
f ≡ g if f − g ∈ I. The equivalence class of f ∈ k[x1, . . . , xn] is denoted by
f + I. Then k[x1, . . . , xn]/I is a commutative ring under the operations

(f + I) + (g + I) = (f + g) + I and (f + I)(g + I) = (fg) + I.

Proposition 2.24. Let I ⊂ k[x1, . . . , xn] be an ideal, and let G be a Gröbner
basis for I w.r.t. any monomial ordering. Then k[x1, . . . , xn]/I, as a vector-
space over k, is isomorphic to the k vector space

S := span{xα : xα 6∈ 〈LT(G)〉}.

Proof. For any f ∈ k[x1, . . . , xn] the remainder of f by G is in S, and gives
a unique representative in the equivalence class f + I. One can check that
this gives an isomorphism.

The next theorem asserts that if V(I) is finite over an algebraically closed
field, then S = span{xα : xα 6∈ 〈LT(G)〉} is a finite dimensional vector
space. The proof follows from Hilbert’s Nullstellensatz.

Theorem 2.25. Let k be an algebraically closed field of characteristic zero,
and V = V(I) be an affine variety in kn. Fix a monomial ordering in
k[x1, . . . , xn]. Then the following statements are equivalent:

(i) V is a finite set.

(ii) For each 1 ≤ i ≤ n there exist mi ≥ 0 such that xmi
i ∈ LT(I).
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(iii) Let G be a Gröbner basis for I. Then for each 1 ≤ i ≤ n there exist
mi ≥ 0 such that xmi

i = LT(g) for some g ∈ G.

(iv) The k-vector space S = span{xα : xα 6∈ 〈LT(G)〉} is finite dimen-
sional.

(v) The k-vector space k[x1, . . . , xn]/I is finite dimensional.

We call an ideal I satisfying any of the above equivalent conditions a zero
dimensional ideal.

Proof. (i)⇒ (ii) Assume that V is finite, and assume that V = {~z1, . . . , ~zd} ⊂
kn. Suppose that for some i no power of xi is in LT(I). We can assume with-
out loss of generality that i = 1, otherwise we rename the variables. Define

f :=
d∏
j=1

(x1 − zj,1) ∈ k[x1]

where zj,1 is the first coordinate of ~zj. Then clearly f(~zj) = 0 for all j =
1, . . . , d, thus f ∈ I(V ). By Hilbert’s Nullstellensatz there exists m > 0 such
that fm ∈ I. Since fm is a univariate polynomial, we have that its highest
degree term, which is a power of x1 is in LT(I), a contradiction.
(ii)⇒ (iii)⇒ (iv)⇒ (v) is trivial, using Proposition 2.24.
(v) ⇒ (i) Assume that k[x1, . . . , xn]/I is finite dimensional. Then for all
i = 1, . . . , n, we have I ∩k[xi] 6= {0}, otherwise {xji + I : j ∈ N} would form
an infinite linearly independent subset of k[x1, . . . , xn]/I. Since k[xi] is a
principal ideal domain, we can define fi 6= 0 ∈ k[xi] such that 〈fi〉 = I ∩k[xi]
for all i = 1, . . . n. For any ~z ∈ V (I) we have fi(~z) = 0, so its i-th coordinate
is a root of fi, which leaves at most deg(fi) <∞ choices for that coordinate.
Since this is true for all coordinates that leaves only finitely many choices for
~z ∈ V (I), thus it is finite.

As a consequence of the previous theorem, the Finiteness Problem can
be decided using any Gröbner basis. Next we study the relationship between
the number of roots in V (I) and the dimension of k[x1, . . . , xn]/I.

Theorem 2.26. Let k be algebraically closed, and I ⊂ k[x1, . . . , xn] be a zero
dimensional ideal. Then

16



(1) |V (I)| ≤ dimk k[x1, . . . , xn]/I.

(2) I is radical if and only if |V (I)| = dimk k[x1, . . . , xn]/I.

Proof. Let V = V (I) = {~z1, . . . , ~zd} ⊂ kn where ~zi = (zi,1, . . . , zi,n). We
will construct a Lagrange basis for the set V , i.e. polynomials L1, . . . , Ld ∈
k[x1, . . . , xn] with the property that

Li(~zj) =

{
1 if i = j

0 if i 6= j.
.

The construction of L1 can be done as follows: since ~z1 6= ~zi for each i =
2, . . . , n, there exists a coordinate index ti where they differ, i.e. z1,ti 6= zi,ti .
Then

L1(x1, . . . , xn) :=
n∏
i=2

xti − z1,ti
zi,ti − z1,ti

∈ k[x1, . . . , xn]

will have the desired property. L2, . . . , Ld can be constructed similarly.
Next we prove that [L1], . . . , [Ld] ∈ k[x1, . . . , xn]/I are linearly independent.
Suppose there exist a1, . . . ad ∈ k such that

a1[L1] + · · ·+ ad[Ld] = [0], i.e. a1L1 + · · ·+ adLd ∈ I.

This implies that for all j = 1, . . . , d

a1L1(~zj) + · · ·+ adLd(~zj) = 0.

But Li(~zj) = δi,j, the Kronecker symbol, which implies that for all j = 1, . . . d
aj = 0. Thus we proved linear independence. We constructed a linearly
independent set of cardinality d in k[x1, . . . , xn]/I, which implies the first
claim.
To prove the second claim, first assume that I is radical. We will prove that
in this case [L1], . . . , [Ld] generates k[x1, . . . , xn]/I. Let [f ] ∈ k[x1, . . . , xn]/I
for some arbitrary polynomial f ∈ k[x1, . . . , xn]. Define ci := f(~zi) ∈ k for
i = 1, . . . , d, and let

F :=
d∑
i=1

ciLi ∈ k[x1, . . . , xn].

17



Then [F ] is spanned by [L1], . . . , [Ld]. Moreover

F (~zi) = f(~zi) for all i = 1, . . . d,

so F − f ∈ I(V ). But by I being radical, I = I(V ), which implies that
[f ] = [F ], which proves that |V (I)| = dimk k[x1, . . . , xn]/I.
Conversely, suppose I is not radical, i.e. I (

√
I. In this case we have

|V (I)| = dimk k[x1, . . . , xn]/
√
I < dimk k[x1, . . . , xn]/I.

Next we define normal sets and multiplication matrices:

Definition 2.27. Let I ⊂ k[x1, . . . , xn] be an ideal.

• Let I be a zero dimensional ideal. Then a set of monomials N is called
a normal set for I if it is a basis for the finite dimensional vector space
S = span{xα : xα 6∈ 〈LT(I)〉}.

• Fix a normal setN = {xα1 , . . . , xαD} for I, whereD = dim k[x1, . . . , xn]/I.
For any f ∈ k[x1, . . . , xn] denote

[f ]N := (c1, . . . , cD) ∈ kD

the vector of coefficients of the f + I ∈ k[x1, . . . , xn]/I in the basis N ,
i.e. f =

∑D
i=1 cix

αi + g for some g ∈ I.

• Fix a normal set N as above, and let f ∈ k[x1, . . . , xn]. The multipli-
cation matrix Mf of f with respect to N is the transpose of the matrix
of the k-linear map

µf : k[x1, . . . , xn]/I → k[x1, . . . , xn]/I

g + I 7→ fg + I

written in the basis N of k[x1, . . . , xn]/I. In other words, the i-th row
of Mf is the vector [f · xαi ]N for i = 1, . . . D.

The next example illustrates how to compute a normal set N and the
multiplication matrices

Mx1 , . . . ,Mxn

of x1, . . . , xn with respect to N , given a Gröbner basis for I w.r.t. any
monomial order.
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Example 2.28. Let � be the graded lexicographic order and let

I = 〈x3 + y + z2 + 1, x+ y2 + z − 1, x+ y + z2 − 1〉.

Then instead if trying to compute a lexicographic Gröbner basis, we notice
that the above generators already form a Gröbner basis w.r.t. the graded
lexicographic ordering with x > y > z. Let G be the set of the above poly-
nomials. Since LT(G) = {x3, y2, z2} we can see that I is zero dimensional,
and the set

N := {1, x, y, z, x2, xy, xz, yz, x2y, x2z, xyz, x2yz}

of cardinality 12 is a normal set for I. To find the 12×12 multiplication ma-
trix Mx of x w.r.t. N , we have to consider the monomials xN := {xi+1yjzk :
xiyjzk ∈ N}. Note that if i < 2 then xi+1yjzk ∈ N , so its coordinates are
trivial to find. If i = 2 then we apply the division algorithm to find the
remainder of x3yjzk by G for j = 0, 1 and k = 0, 1. In particular, we get

x3 + I = (x+ I)− 2(1 + I), x3y + I = (xy + I)− 2(y + I)

x3z + I = (xz + I)− 2(z + I), x3yz + I = (xyz + I)− 2(yz + I).

thus the matrix Mx is given by

Mx :=



0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

−2 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 −2 0 0 1 0 0 0 0 0 0

0 0 0 −2 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 −2 0 0 1 0


Similarly for My and Mz, or for Mf for any f ∈ Q[x, y, z].
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Finally, the following theorem gives a strong connection between the
points in V(I) and the eigenvalues of the multiplication matrices.

Theorem 2.29. Let k be an algebraically closed field of characteristic 0 and
let I be a zero dimensional ideal in k[x1, . . . , xn] with

V = V(I) = {ξi = (ξi,1, . . . , ξi,n) ∈ kn : i = 1, . . . D}.

Let D′ = dim k[x1, . . . , xn]/I and fix a normal set

N = {xα1 , . . . , xαD′},

and for f ∈ k[x1, . . . , xn] denote by Mf the multiplication matrix of f with
respect to N , as defined above. Then

1. λ ∈ k is an eigenvalue of Mf if and only if there exists ξi ∈ V such
that λ = f(ξi).

2. Assume that D = D′, i.e. I does not have multiple roots. Define the
generalized Vandermonde matrix corresponding to V(I) and N by

Σ =

 ξα1
1 · · · ξα1

D
...

...
ξαD
1 · · · ξαD

D

 .
Then Σ is invertible and the multiplication matrices Mf are simultane-
ously diagonalizable, i.e. we have

Σ−1MfΣ = Df ,

where Df = diag(f(ξ1), . . . , f(ξD)). In particular, we can find the j-th
coordinates of the roots by diagonalizing Mxj to get Dxj = diag(ξ1,j, . . . , ξD,j).

Proof. (1) “⇐”: First we prove that f(ξj) is an eigenvalue of Mf for all
ξj ∈ V , i.e. we will prove that

MfΣ = ΣDf .

The i-th row of Mf is equal to [f · xαi ]N = [ci,1, . . . ci,D] such that

f · xαi =
D∑
k=1

ci,kx
αk + g for some g ∈ I.
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Therefore, the (i, j)-th entry of MfΣ is given by

D∑
k=1

ci,kξ
αk
j = f(ξj) · ξαi

j − g(ξj).

But ξj ∈ V(I), therefore g(ξj) = 0. Thus, the j-th column of MfΣ is equal
to f(ξj) times the j-th column of Σ.
“⇒”: Let λ ∈ k be an eigenvalue of Mf and suppose that for all ξi ∈ V (I)
we have λ 6= f(ξi). Define the polynomial g := f − λ ∈ k[x1, . . . , xn]. We
will prove that g has an inverse modulo I. Let

g̃ :=
D∑
i=1

1

g(ξi)
Li(x)

where Li are the polynomials constructed in Theorem 2.26 with the property
Li(ξj) = δi,j. Then we have that gg̃(ξi) = 1 for all ξi ∈ V , thus 1 − gg̃ ∈
I(V (I)) =

√
I. Thus, there exists m ∈ N such that (1−gg̃)m ∈ I. Expanding

(1− gg̃)m = 1− gg̃ + · · ·+ (−1)m(gg̃)m = 1− gĝ ∈ I

for ĝ = g̃ − gg̃2 · · ·+ (−1)mgm−1g̃m. Thus ĝg ≡ 1 modulo I. But

MgMĝ = Mgĝ = Id,

thus Mg = Mf − λId is invertible. This contradicts to our assumption that
λ is an eigenvalue of Mf .

(2) It remains to prove that the matrix Σ is non-singular. This follows
from the vector space isomorphisms

k[V ] ∼= k[x1, . . . , xn]/I ∼= span(N)

and since N is a normal set, the corresponding elements

xα1|V , . . . , xαD |V

in k[V ] are linearly independent, thus their evaluation vectors on V

[ξα1
1 , . . . , ξα1

D ], . . . , [ξαD
1 , . . . , ξαD

D ]

are linearly independent, which proves the second claim.
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