
In Class Problems
MA 722 Spring 2012

1. Euler identity and the kernel of the Jacobian matrix
(a) Let F be a homogeneous polynomial of degree m in the variables x0, x1, . . . , xn. Prove
the Euler identity:
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xn = mF (x0, x1, . . . , xn).

(b) Let f = (f1, . . . , fk) be a vector of k homogeneous polynomials of degrees (d1, . . . , dk)
in the variables x = (x0, x1, . . . , xn). Let Df(x) be the k × (n + 1) matrix of partial differ-
entials of f evaluated at x. Assume that for some x̃ = (x̃0, . . . , x̃n) ∈ Cn+1 f(x̃) = 0. Prove
that the matrix-vector product

Df(x̃)x̃ = 0.

(c) Let f and x̃ as in part (b). Prove that if Df(x̃)x̃ = 0 for some x̃ ∈ Cn then f(x̃) = 0.

2. Inverse Function Theorem implies Bezout’s theorem.
Let (d) = (d1, . . . , dn) ∈ Nn

>0 andH(d) = {f = (f1, . . . , fn) : ∀i fi homogeneous of degree di} ⊂
C[x0, . . . , xn]n. Consider the solution variety

V = {(f, z) ∈ H(d) × P(Cn+1) : f(z) = 0}.

Denote the projection π : H(d) × P(Cn+1) → H(d), π(f, z) = f , and its restriction to
V by πV := π|V . Abusing the notation, for z = (z0, z1, . . . , zn) ∈ Cn+1 we denote by
z = (z0 : z1 : · · · : zn) ∈ P(Cn+1).

(a) Show that the derivative Dπ(f, z) of π at (f, z) ∈ H(d) × P(Cn+1) is equal to the
projection

π′ : H(d) × Tz → H(d), π′(h,w) = h,

for h ∈ H(d) and w ∈ Tz. Here Tz = {y ∈ Cn+1 : z · y = 0} is the hyperplane of vectors
orthogonal to the line going through z in Cn+1, and note that Tz can be viewed as the
tangent space of P(Cn+1) at z.

(b) Show that the derivative DπV (f, z) of πV at (f, z) ∈ V is the restriction of π′ to the
tangent space T(f,z)V = {(h,w) ∈ H(d) × Tz | h(z) +Df(z)w = 0}. Here Df(z) ∈ Cn×(n+1)

is the Jacobian matrix of f at z.

(c) Prove that if rank(Df(z)) = n then DπV (f, z) is invertible.

(d) Using part (a) and the Inverse Function Theorem, show that if (f, z) ∈ V −Σ′ then
there exists an open neighborhood of (f, z) where the inverse function of πV exists, and is
continuously differentiable. Here Σ′ = {(f, z) ∈ V : rank(Df(z)) < n}.
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(c) Let f ∗ = (xd1
1 − xd1

0 , x
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0 ) ∈ H(d) and denote by ξ1, . . . , ξD its
D =

∏n
i=1 di distinct common roots. Show that for all ε > 0 there exists a neighborhood U

of f ∗ such that for all f ∈ U , f has D distinct roots ζ1, . . . , ζD such that ‖ξi − ζi‖ < ε for all
i = 1, . . . ,D.

3. Newton’s method in projective space
Let f = (f1, . . . , fn) be a vector of n homogeneous polynomials of degrees (d) = (d1, . . . , dk)
in the variables x = (x0, x1, . . . , xn). Recall that for z ∈ Cn+1

Tz = {w ∈ Cn+1 : z ·w = 0} ⊂ Cn+1

is the tangent space of P(Cn+1) at z. Also recall that the derivative of f at z is a linear map
Df(z) : Cn+1 → Cn defined by the Jacobian matrix of f . Denote byDf(z)|Tz the restriction
of Df(z) to Tz, and by Df(z)|−1

Tz
its inverse (assume it exists). Define the Newton step by

Nf (z) = z−Df(z)|−1
Tz
f(z)

(a) Prove that the map Nf takes the line through z and 0 into a line through Nf (z) and 0.
(b) Prove that Nf (z) = z if and only if f(z) = 0.
(c) Implement in Maple the Newton iteration for n = 2.
(d) Run the Newton iteration with data f = x2 + y2 + z2, g = 2xy − xz + z2 and starting
point z0 := (I, (1 + I)/2, 1) where I =

√
−1. Does it converge?

2


