In Class Problems

MA 722 Spring 2012

1. Euler identity and the kernel of the Jacobian matrix

(a) Let *F* be a homogeneous polynomial of degree *m* in the variables x_0, x_1, \ldots, x_n . Prove the *Euler identity*:

$$\frac{\partial F}{\partial x_0} x_0 + \frac{\partial F}{\partial x_2} x_2 + \dots + \frac{\partial F}{\partial x_n} x_n = mF(x_0, x_1, \dots, x_n)$$

(b) Let $f = (f_1, \ldots, f_k)$ be a vector of k homogeneous polynomials of degrees (d_1, \ldots, d_k) in the variables $\mathbf{x} = (x_0, x_1, \ldots, x_n)$. Let $Df(\mathbf{x})$ be the $k \times (n+1)$ matrix of partial differentials of f evaluated at \mathbf{x} . Assume that for some $\tilde{\mathbf{x}} = (\tilde{x}_0, \ldots, \tilde{x}_n) \in \mathbb{C}^{n+1} f(\tilde{\mathbf{x}}) = 0$. Prove that the matrix-vector product

$$Df(\tilde{\mathbf{x}})\tilde{\mathbf{x}} = 0.$$

(c) Let f and $\tilde{\mathbf{x}}$ as in part (b). Prove that if $Df(\tilde{\mathbf{x}})\tilde{\mathbf{x}} = 0$ for some $\tilde{\mathbf{x}} \in \mathbb{C}^n$ then $f(\tilde{\mathbf{x}}) = 0$.

2. Inverse Function Theorem implies Bezout's theorem.

Let $(d) = (d_1, \ldots, d_n) \in \mathbb{N}_{>0}^n$ and $\mathcal{H}_{(d)} = \{f = (f_1, \ldots, f_n) : \forall i \ f_i \text{ homogeneous of degree } d_i\} \subset \mathbb{C}[x_0, \ldots, x_n]^n$. Consider the solution variety

$$V = \{ (f, \mathbf{z}) \in \mathcal{H}_{(d)} \times \mathbb{P}(\mathbb{C}^{n+1}) : f(\mathbf{z}) = 0 \}.$$

Denote the projection $\pi : \mathcal{H}_{(d)} \times \mathbb{P}(\mathbb{C}^{n+1}) \to \mathcal{H}_{(d)}, \quad \pi(f, \mathbf{z}) = f$, and its restriction to V by $\pi_V := \pi|_V$. Abusing the notation, for $\mathbf{z} = (z_0, z_1, \ldots, z_n) \in \mathbb{C}^{n+1}$ we denote by $\mathbf{z} = (z_0 : z_1 : \cdots : z_n) \in \mathbb{P}(\mathbb{C}^{n+1}).$

(a) Show that the derivative $D\pi(f, \mathbf{z})$ of π at $(f, \mathbf{z}) \in \mathcal{H}_{(d)} \times \mathbb{P}(\mathbb{C}^{n+1})$ is equal to the projection

$$\pi': \mathcal{H}_{(d)} \times T_{\mathbf{z}} \to \mathcal{H}_{(d)}, \quad \pi'(h, \mathbf{w}) = h,$$

for $h \in \mathcal{H}_{(d)}$ and $\mathbf{w} \in T_{\mathbf{z}}$. Here $T_{\mathbf{z}} = \{\mathbf{y} \in \mathbb{C}^{n+1} : \mathbf{z} \cdot \overline{\mathbf{y}} = 0\}$ is the hyperplane of vectors orthogonal to the line going through \mathbf{z} in \mathbb{C}^{n+1} , and note that $T_{\mathbf{z}}$ can be viewed as the tangent space of $\mathbb{P}(\mathbb{C}^{n+1})$ at \mathbf{z} .

(b) Show that the derivative $D\pi_V(f, \mathbf{z})$ of π_V at $(f, \mathbf{z}) \in V$ is the restriction of π' to the tangent space $T_{(f,\mathbf{z})}V = \{(h, \mathbf{w}) \in \mathcal{H}_{(d)} \times T_{\mathbf{z}} \mid h(\mathbf{z}) + Df(\mathbf{z})\mathbf{w} = 0\}$. Here $Df(\mathbf{z}) \in \mathbb{C}^{n \times (n+1)}$ is the Jacobian matrix of f at \mathbf{z} .

(c) Prove that if rank $(Df(\mathbf{z})) = n$ then $D\pi_V(f, \mathbf{z})$ is invertible.

(d) Using part (a) and the Inverse Function Theorem, show that if $(f, \mathbf{z}) \in V - \Sigma'$ then there exists an open neighborhood of (f, \mathbf{z}) where the inverse function of π_V exists, and is continuously differentiable. Here $\Sigma' = \{(f, \mathbf{z}) \in V : \operatorname{rank}(Df(\mathbf{z})) < n\}$. (c) Let $f^* = (x_1^{d_1} - x_0^{d_1}, x_2^{d_2} - x_0^{d_2}, \dots, x_n^{d_n} - x_0^{d_n}) \in \mathcal{H}_{(d)}$ and denote by ξ_1, \dots, ξ_D its $\mathcal{D} = \prod_{i=1}^n d_i$ distinct common roots. Show that for all $\varepsilon > 0$ there exists a neighborhood U of f^* such that for all $f \in U$, f has \mathcal{D} distinct roots ζ_1, \dots, ζ_D such that $\|\xi_i - \zeta_i\| < \varepsilon$ for all $i = 1, \dots, \mathcal{D}$.

3. Newton's method in projective space

Let $f = (f_1, \ldots, f_n)$ be a vector of *n* homogeneous polynomials of degrees $(d) = (d_1, \ldots, d_k)$ in the variables $\mathbf{x} = (x_0, x_1, \ldots, x_n)$. Recall that for $\mathbf{z} \in \mathbb{C}^{n+1}$

$$T_{\mathbf{z}} = \{ \mathbf{w} \in \mathbb{C}^{n+1} : \mathbf{z} \cdot \overline{\mathbf{w}} = 0 \} \subset \mathbb{C}^{n+1}$$

is the tangent space of $\mathbb{P}(\mathbb{C}^{n+1})$ at \mathbf{z} . Also recall that the derivative of f at \mathbf{z} is a linear map $Df(\mathbf{z}) : \mathbb{C}^{n+1} \to \mathbb{C}^n$ defined by the Jacobian matrix of f. Denote by $Df(\mathbf{z})|_{T_{\mathbf{z}}}$ the restriction of $Df(\mathbf{z})$ to $T_{\mathbf{z}}$, and by $Df(\mathbf{z})|_{T_{\mathbf{z}}}^{-1}$ its inverse (assume it exists). Define the Newton step by

$$N_f(\mathbf{z}) = \mathbf{z} - Df(\mathbf{z})|_{T_{\mathbf{z}}}^{-1}f(\mathbf{z})$$

(a) Prove that the map N_f takes the line through \mathbf{z} and 0 into a line through $N_f(\mathbf{z})$ and 0. (b) Prove that $N_f(\mathbf{z}) = \mathbf{z}$ if and only if $f(\mathbf{z}) = 0$.

(c) Implement in Maple the Newton iteration for n = 2.

(d) Run the Newton iteration with data $f = x^2 + y^2 + z^2$, $g = 2xy - xz + z^2$ and starting point $\mathbf{z}_0 := (I, (1+I)/2, 1)$ where $I = \sqrt{-1}$. Does it converge?