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Abstract

Earlier results expressing multivariate subresultants as ratios of two subdetermi-
nants of the Macaulay matrix are extended to Jouanolou’s resultant matrices. These
matrix constructions are generalizations of the classical Macaulay matrices and in-
volve matrices of significantly smaller size. Equivalence of the various subresultant
constructions is proved. The resulting subresultant method improves the efficiency
of previous methods to compute the solution of over-determined polynomial sys-
tems.
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1 Introduction

The primary concern of the present paper is to find efficient methods to compute
multivariate generalizations of the univariate subresultants. Univariate subresul-
tants were introduced originally by Sylvester [14] and rediscovered by Collins in
[5] where subresultants were used to give an efficient and parallelizable algorithm
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to compute the greatest common divisor of two univariate polynomials. Multivari-
ate subresultants generalize the classical univariate subresultants in the sense that
they provide the coefficients of certain polynomials which in the univariate case
include the greatest common divisor of two given polynomials. Gonzalez Vega in
[9,10] gives a multivariate generalization of the univariate subresultant method us-
ing a non-homogeneous construction by Habicht [11]. He defines the subresultants
as subdeterminants of the Macaulay matrix, and then constructs a geometric rep-
resentation of the zero-dimensional solution set of a given polynomial system using
them. Chardin [3,4] introduces a more general version of subresultants as the ratio
of two subdeterminants of the Macaulay matrix, and proves that they satisfy some
universal properties, described below in the preliminaries.

In this paper we define subresultants using a generalization of the Macaulay ma-
trix, a matrix construction introduced by Jouanolou in [12]. The entries of this
matrix include coefficients of the given polynomials and their so called Morley
forms, described below. We prove that our construction gives the same subresul-
tants as the Macaulay type constructions [3]. The practical advantage of using our
matrix constructions is that the size of the matrices is smaller than in the construc-
tions using Macaulay matrices. The resulting method improves the efficiency of the
solution of over-determined polynomial systems, which is the subject of the paper
[16]. On a more theoretical level, we believe that our general formulation of sub-
resultants gives an understanding of the connection between Koszul complexes in
different degrees, bringing us closer to an understanding of the connection between
the geometric and the algebraic structure of the solution of non-generic polynomial
systems.

The paper is structured as follows.

e In the preliminaries, after recalling the univariate subresultant construction of
Collins [5], we describe multivariate subresultants using Macaulay’s matrices
defined by Gonzélez Vega and Chardin [3,4,9,10]. We then describe Jouanolou’s
resultant matrix construction [12].

e Section 3 contains the description of the subresultant construction based on
Jouanolou’s resultant matrices.

- In subsection 3.1, we give the constructions for the submatrices of Jouanolou’s
resultant matrices which we later use in the definition of the subresultants. We
prove that these submatrices have generically maximal rank.

- In subsection 3.2 we define the subresultants as the ratios of two minors of
the resultant matrices of Jouanolou. We prove that the subresultants are poly-
nomials in the coefficients of the given polynomial system of the same de-
gree as the subresultants constructed from Macaulay’s matrix. Furthermore,
in this subsection we prove that the non-vanishing of a particular subresultant



is equivalent to that certain polynomials with given support are in the ideal
generated by the given polynomials.

- In subsection 3.3 we describe the subresultants as the determinants of certain
Koszul-Weyman type complexes. This construction is needed in order to prove
the main theorem of the paper, that the Jouanolou type subresultants are the
same as the Macaulay type subresultants. The proof involves the understanding
of non-exactness of Koszul type complexes in a fixed degree and its connection
to the non-exactness of Koszul type complexes in a different degree.

We note here that an anonymous referee suggested an alternative way to present
the results of the paper: Define the Jouanolou type subresultants as determinants
of based Koszul-Weyman type complexes (see Definitions 3.3.1 and 3.3.4). Then
prove that the subresultants defined this way are the same as the subresultants
defined in [4] using Macaulay matrices (see Theorem 3.3.10). Finally, deduce the
formula for the subresultant as the ratio of two determinants as in Definition
3.2.1. The advantage of this presentation could be that some of the properties of
the Jouanolou type subresultants proved here could be derived directly from those
already proved for the Macaulay type subresultants in [4]. However, it is not clear
how to prove Theorem 3.3.10 without using these properties of the Jouanolou type
subresultants (e.g. degrees). Thus the suggested alternative presentation may not
simplify or reduce the length of the paper, so we kept the original presentation.

2 Preliminaries

2.1 Subresultants a la Macaulay

Before we describe the mutivariate constructions of Gonzélez-Vega [9] and Chardin
[4], let us recall the classical univariate subresultant construction (cf. [5] or [10]).

Let fi = Y% a;2" and f, = Y%, bz’ be two univariate polynomials of degree
deg(f1) = di and deg(fy) = dy with coefficients from an integral domain R which



has quotient field K. For each i = 0, ..., min(d;,dy) — 1 we can define the matrix

dy +dy —1
ap ... aq,
dy —1
S' = ap ... agq
bo ... ba,
dy —i
bo - bu,

with rows corresponding to the polynomials z7 - f; (0 < j < dy — ) and 27 - fy
(0 < j < dy;—1). Note that SY is the Sylvester matrix of fi, f, and S? is a submatrix
of S obtained by deleting 2i rows and i columns.

Assume that ¢ > 1. For any 0 < j < i we can define Sé- to be the square submatrix
of S* obtained by removing the columns indexed by the set {1,2,... i+1}—{j+1}.
The scalar subresultant A’ of (fy, f2) is defined by

A; ::det(Sj-). (1)

Note that classically univariate subresultants are defined as polynomials in x with
coefficients the scalar subresultants defined above (see (2) below). The reason we
gave the definition of scalar subresultants is that they generalize to the notion we
use for multivariate subresultants.

Assume that deg(f1) > deg(f2) and the leading coefficient of f; is non-zero, i.e.
aq, 7 0. Then the following statements hold (cf. [5,10]):

(1) The greatest common divisor of f; and f, in K[x] has degree i if and only if
det(S°) = A} =--- = AlZ} = 0 and Al £0.

(2) For each i =0, ..., min(d;,dy) — 1 the polynomials
ZA;-xj:Aé—i-Ai-x—i--'-Aﬁ-xi (2)
=0

are in the ideal (f1, fa) C R[z]. In particular, if gedy,(f1, f2) has degree i
than it is equal to >>%_y A% - 27 in K[z].



For homogeneous multivariate polynomials systems Gonzélez-Vega [9] and Chardin
[4] generalized the notion of univariate subresultants. Let us recall the properties
of the multivariate subresultant construction following the approach in [4]. Let

fi= Z CLa® ..., fs = Z Cs.al® € R[T1, ..., 24)

|al=d: |al=ds

be homogeneous polynomials with degrees d = (dy,...ds) and with parametric
coeflicients ¢; , where R is a Noetherian UFD containing Z[c; ,]. To simplify the
notation % denotes the monomial z{* - - -z

Qn
n

Given v € N, let S C Mon(v) be a set of monomials of degree v. Assume that S
has cardinality H4(v), where H, denotes the Hilbert function of a regular sequence
of s polynomials with degrees d = (dy, ..., ds) (see e.g. [4]). Moreover, assume that

K(S)+ I, = Kl[z1,...,2,],

where K is the fraction field of R and [, denotes the degree v part of the ideal
(f1,..., fs)x. Then Chardin in [4] defines the polynomials AY(f) € Z[c; o] satisfy-
ing the following properties:

(1) It =, .., fs) € klzo, ..., x,] are coefficient specializations of the polyno-
mials f = (fi,..., fs) (k is a field) then

Ag(f) 40 if and only if I, + k(S) = k[zo, ..., 2],

Here I, denotes the degree v part of the ideal (fi, ..., fs).

(2) For any fixed 1 < i < s, A% is a homogeneous polynomial in the coefficients
Cio (la| = d;) of degree H (v — d;). Here Hj denotes the Hilbert function
of a regular sequence of s — 1 homogeneous polynomials in n variables with
degrees Czl = (dl, e ,di_l, di+17 e ,d5)~

(3) For any z* ¢ S of degree v we have

Ag-a®+ > &5 Alsugary-aoyy 27 € (fioees faly (3)

zPes

where €3 = £1.
(4) In the case when s = n and v > > (d; — 1), we have Hy(v) = 0 and
A = Resq(f), the projective-resultant (see next subsection for definition).

Note that 1. and 2. are universal properties in the sense that the subresultant A% is
determined by them up to a constant multiple. In the special case when n = 2, for
0 <i <min(dy,ds)—1 and 0 < j < 4, the univariate subresultant A; defined in (1)

' . . U b
is the same as A% for v = dy+dy—i and S = {z¥, a7 2o, ..., oy ‘wb}—{ 2772} }.



For the case when s = n, the subresultant construction of Gonzalez Vega [9,10]
is defined as generating polynomials with fixed pattern in the ideal generated by
fi, -+, fn, using subdeterminants of the Macaulay matrix. His definition is anal-
ogous to the notion and construction of classical univariate subresultants. In [4]
Chardin defines multivariate subresultants as A%, and constructs them as the de-
terminants of the degree v homogeneous part of the Koszul complex of fi,..., fs
restricted to (Mon(v) — S). This is an alternating product of subdeterminants cor-
responding to matrices of the differentials of the Koszul complex. Finally, Chardin
in [3] expresses A% as the ratio of two subdeterminants of the Macaulay matrix.

Example 2.1.1 For n = 3 consider 3 generic polynomials f = (f1, f2, f3) in the variables (z,y, z) of degrees
d=(3,3,2):

fi =agz® + a1£ﬂ2y +agz?z + a3$y2 + agxyz + aszz? + ae.y3 + a7y2z + agyz2 +agz®
fa =box® + b1:c2y + box?z + ngy2 + bazyz + bsxz? + b6y3 + b7y2z + bgyzz + bg23 (4)
f3 :cox2 +cizxy + coxz + 03y2 + cayz + 05z2.

Taking v = 5 the submatrix of the Macaulay matrix corresponding to the subresultant has size 20 x 21 and we
do not include it here. Taking v = 4, the Macaulay type subresultant matrix is the following 12 X 15 matrix

ap a1 az a3z a4 as ag ay ag ag 0 O O O O

cp cp cg2 cg ¢4 ¢c5 0 0O O O O O O O O

by by by by by bs bg by bg bg 0 0 0 0 0

0 by O by by O by by by 0 bg by bg by 0

with rows corresponding to monomials

[z4 o3y 232 2222 3z 2Pyx 2Bz yt Y3z 22y? 2By z4} ,

and columns corresponding to monomials
[w4 23y 232 y22? ya?z 2222 Y3z ylxz 2Pyx 23z yt Y3z 22y? 23y 24] .

Taking any S C Mon(4) of cardinality H (s 3 2y(4) = 3, the columns of M not corresponding to S form a square
matrix Mg. In this example the determinant of My is equal to the subresultant A%. (Note that in general the
subresultant A% is a ratio of two subdeterminants.) [



2.2 Projective resultants, Morley forms and Jouanolou’s matrices

In this section we recall the definition of projective resultants and describe the
construction of Jouanolou for Morley forms and resultant matrices (cf. [12, Section
3.10]).

First we give the definition of projective-resultants.

Definition 2.2.1 Let

fi= Z C1,011‘047 vy Jn= Z Cn,ozma

lor|=d1 |a|=dr,
be “generic” homogeneous polynomials of degrees d = (di,...d,), i.e. the co-
efficients ¢;, are parameters, and we consider fi,..., f, as polynomials in the
ring Zlcio : |a] = d;;1 < @ < nl[xy,...,x,]. Then there exists a polynomial
Resy such that Resy is an irreducible element of Zc; | depending only on the de-
grees d = (di,...,d,), and for any complex coefficient specialization fiooo i fn €
Clxy, ...,y of fi,..., fn we have

{xEPg_l|f1(x):---fn(x):()}7é@ & Resd(fl,...,fn)zo.

Resy is called the projective-resultant in degrees d = (dy,...,d,). For proofs and
a more general definition of resultants we refer to [8]. Note that the above results
remain true if we replace the complex field C by any algebraically closed field of
characteristic zero.

In order to define Jouanolou’s matrix construction for the projective-resultant let
us first fix the notation. Let f1, ..., f, be homogeneous polynomials in Rz, . .., z,]
with degrees d = (dy, . ..d,) where R is a Noetherian UFD. Denote by § the sum

n

§=> (di—1).

i=1

Definition 2.2.2 Let d = (dy,...d,) be as above. For n > 0 we define the follow-
ing sets of monomials

Mony, () := {2 | o] = n}
Repy(n) :={z* [ |a] = n, 3i a; > d;}
Doda(n) :=={z" | |a] =n, Ji # j a; = di, 0 = d;}.



The notations Mon, Rep, and Dod, are borrowed from [12] and stand for mondomes,
d-repus and d-dodus, respectively. We may omit to note n if it is clear from the
context. Also, we denote by Mon*(n) the dual basis of Mon(n) in the dual R-
module (Mon(n))*, and similarly for Repj(n). For n < 0 we define all of the above
sets to be the empty set.

Next we define the Morley forms.

Definition 2.2.3 Let y = (y1,...,yn) be a new set of variables. For each 1 <
i,7 < n we define the discrete differentials 6; ; by

fz‘(yh s Yi—1, LG, ,xn) - fi(yla e Yi—1Y5, L, - ,xn)
Tj—Yj

6i,j<x7 y) =

The determinant of (6; j)1<; j<n IS called the Bezoutian.

Note that our definition of Bezoutians is different from the Bezoutians defined in
[1,2], which is defined for n non-homogeneous polynomials in n — 1 variables, and
is in the ideal generated by the polynomials.

We use the term Morley form to denote the coefficient Morl, of y” in the Bezoutian,
i.e. we have

det(9i7j)1§i7j§n = Z MOI'LY(QZ)y’Y. (5)

ly|<é
Note that the degree of Morl,(x) is § — |7|.

Next we define the resultant matrices of Jouanolou. We have the following remark
first.

Remark 2.2.4 Throughout this paper we chose to use the same notation for
linear maps and their matrices in the bases the maps were defined in. Since all
linear maps in the paper are defined for fixed bases, and we do not change these
bases throughout the paper, this abuse of notation will not lead to ambiguity.
Also, in our matrix notation, each row corresponds to an element of the basis of
the domain and each column correspond to an element of the basis of the image
space, thus the matrices are acting on the right hand side. Throughout the paper
the dual of a linear map ¢ is denoted by ¢*, therefore the transpose of the matrix
of ¢, corresponding to the map ¢*, is also denoted by ¢*.

Definition 2.2.5 For any fixed 0 < n < 0 + 1 the Jouanolou resultant matrix



J,(f) has the following structure:

The blocks of the matrix J,(f) correspond to the following R-linear maps:

For 0 <t < § define

Q, : (Mon(t))* — (Mon(§ — 1)),  y” + Morla(z). (6)

If x* € Repy(t) then let i(«) be the smallest index such that c) > di) and
define

@:: (Rep(t)) — (Mon(t), o ( Zj;f;) oy M)

Ti(a)
The dual of the R-linear map ®,, is denoted by
o7 - (Mon(n))* — (Repy(n)),  y"— > 4’ (2,(2%)-y° (8)
x*€Repy(n)

where y°(27) = &5, Finally, the matrix J,(f) corresponds to the following R-
linear map, also denoted by J,(f):

J,(f) : (Mon(n))* @ (Repy(5 — ) — (Mon(6 — 1)) @ (Repy(n))*
(v%,2%) = (217 + 5 (2), ®}(y7)) (9)

for y? € Mon*(n) and * € Repy(§ — n).

Theorem 2.2.6 [6,12/
Let f = (f1,..., fa) be generic homogeneous polynomials in Rlxq, ..., x,] of degree
d=(dy,...,d,). Then

1) For all 0 <n <d+1, Jouanolou’s matrix J,(f) is square. [6,12
n



(2) Forall0<n<d+1

Resq(f) = det(Es_,(f)) det(E,(f))

where E,(f) (Es_y,(f), resp.) is the submatriz of the matriz J,(f) with rows
and columns corresponding to monomials in Dodgy(n) (Dodg(é —n), resp.).

[6]
(3) For all0 < s,t <d+1 and for x* € Mon(s)

2 Y y’Morls(z) — y* > y"Morl,(z) (10)

yPeMon*(t) yYEMon* (t—s)

is in the ideal (f1(z), ..., fu(x), fr(y), ..., fuly)) [12, 3.11.11]).
(4) Let C denote the matrix corresponding to the map ®; : (Mon(n))* — (Repy(n))*

and let B denote the column vector (x"Morlg(x)) =, where x7 is any fived
element of Mon(n + 1). Then any mazimal minor of the matriz

B C #Mon(n) ()

#Rep,(n) +1

is in the ideal (fi(z),..., fu(x)). [12, Proposition 3.11.19.5]

Example 2.1.1 (cont)

Let n =3, d = (3,3,2) and f = (f1, f2, f3) be polynomials in x := (z,y, z) as in Example 2.1.1, i.e.
f1 :a0x3 + a1a:2y + a2x22 + agacy2 + agxyz + a5z22 + agy3 + a7y2z + a3y22 + agz3

fa =boz® + b122y + bax?z + byzy® + bazyz + bswz? + bey® + bry?z + bgyz? + bo2® (12)

f3 :coac2 +cixy + coxz + 03y2 + cayz + 0522.

Using the variables u := (u,v,w) for the dual R-algebra, the discrete differentials 6; ; all have similar forms as
the following instance:

91,2 = a6y2 + aryw + azzry + asyv + a1x2 + ang + aqzw + arvw + azrv + a6v2.

The determinant of the matrix (0;, ;) is the Bezoutian, we cannot include it here. The Morley forms — coefficients
of the Bezoutian as a polynomial in u,v,w — have multilinear coefficients. For example Morly, have coefficients
like this one:

Morlyy = -+ - + (—a1c1bs + azcobs — aocsbs + asbier + asbocs — azbocs — ascobs + agbses )2y + - - -

Note that the above coefficient is a “bracket polynomial”, i.e. it is a 3 X 3 subdeterminant of the coefficient matrix

of f.

10



Jouanolou’s matrix J2(f) for n = 2 is the following 11 X 11 matrix:

- w2 22y w2 Pu2 pyz Fu2 222 Hu2 43 Hy2 02, Hu2 02 M2 .3 €0

Fow,z3 Pou,a2y Pouw,a2z Pou,oy2 HFowoyz Poy g2 Foy 3 Pouy2z Pou,yz2 Hou,23 €1

Fop,e3 Pau,aZy Pww,z2s H 2 Pwu,ayz Hoy 222 Papuy3 Puww,y2s Pww,yz2 Hww,23 €2

B2 33 Hy2 520 Ho2 525 Ho2 502 Hy2 oo Hy2 502 Hy2 030 K2 02, M2 02 My,2 03 €3

wv,x2y Pwv,z2z 2 Hwv,zyz Py 222 Pyo,y3 Puwo,y2z Hwo,yz2 Hwo,z3 ¢4

B M2 g2, M2 02 M2 03 (13)

Fow2 53 Hoy2 02y B2 22, B2 502 Hy2 gyn Hy2 5,2 Hy,2
ag ay as as aq as ag ar ag ag 0
co cy co cs3 cq cs 0 0 0 0 0
bo b1 b2 b3 by bs be by bg bg 0

0 co 0 cy co 0 c3 cq cs 0 0

L 0 0 co 0 cy co 0 c3 cq cs 0

where p,,5 co denotes the coefficient of x* in Morl, s (x).
The rows of the resultant matrix correspond to the monomials

[u2 wo uw v vw w? x® 22z y? 22y z3]
and the columns correspond to the monomials
[x?’ yr? zx? y?x 2yx 22z y3 ¢z 22y 23 w2} .
Since Dod (3 3,2)(2) = Dod (3, 3,2)(3) = 0, the determinant of Jouanolou’s matrix is the resultant.

Note that Macaulay’s resultant matrix (which is a special case of Jouanolou’s matrices for n = § + 1 = 6) has size
28 x 28, which we do not include here. Its determinant is a nontrivial multiple of the resultant. The ratio of the
determinant and the resultant is the determinant of the following matrix Eg:

ap 0 0 0 bp O O

=]

a1 0 ag b1 bg O

az 0 0 ag b2 0 bg

o

ag as as bg bs 0

0 ag ag 0 0 bg O

0a9a7a60b7b6

with rows and columns corresponding to the monomials

Dody3 3,2)(6) = [x4z2 233 23y2? 2323 yBaz? yts2 y3z3] 0

11



3 Subresultants a la Jouanolou

Let fi = YXjaj=d, 10T -5 Jn = Xjaj=d, Cn.aT® be generic homogeneous poly-

nomials in R[zy,...,z,] with degrees d = (dy,...d,) where R is a Noetherian

UFD containing a field & of characteristic zero and Z|c; o). Denote by § the sum
? ,(d; — 1) as before, and fix n > 0 and v > 0.

In this section we define a matrix J,, ,(f), a submatrix of Jouanolou’s matrix J, (f)
defined in (9), such that it gives an analogue to the Macaulay type subresultant of
degree v. The motivation for the otherwise arbitrary construction of J,,,(f) is to
obtain a submatrix of J,(f) which has the following properties:

(1) The difference between the number of rows and columns of J,, ,(f) is Hq(v),
the same as the difference between the number of rows and columns of the
Macaulay type subresultant matrix of degree v (see [4]).

(2) There exists submatrices Eq, Ey of J,,(f) such that any maximal minor of
J,.(f) divided by det(Eq) - det(E3) is a homogeneous polynomial in the co-
efficients of f; of degree H (v — d;) which is the same as the degree of the
Macaulay type subresultant. These homogeneous polynomials are going to be
our subresultants.

(3) The non-vanishing of a particular subresultant is equivalent to that fi,..., f,
‘pseudo-generates’ all monomials of degree § — 7, except maybe a particular
subset of cardinality Hy(v). (See Proposition 3.2.4 and Lemma 3.3.9 for the
meaning of the term ‘pseudo-generate’.)

3.1 Construction of the subresultant matriz

First we define sets of monomials corresponding to columns and rows of Jouanolou’s
resultant matrix J,(f) to be removed to obtain the submatrices J,, ,(f).

Definition 3.1.1 Fixd = (dy,...,d,). For 0 < q < p let

Mon,(p, q) :={z* | |a| = p, o > ¢}
Repy(p, q) :={z* € Mon,(p,q) | Ji <n—1 a; >d; or o, >d,+q}

Note that there are bijections between the sets

Mon,, (p, q) = Mon,(p — ¢) and Repy(p, ¢) = Repy(p — q)

12



by taking o, := a,, — q (see also Definition 2.2.2). We denote the sets of monomials
corresponding to columns and rows of J,, ,(f) by

Mon,,(p, q) := Mon,,(p) — Mon,(p, q)
Repy(p, q) := Repy(p) — Repy(p, q).

We may omit to note n if it is clear from the context. We also define here the set

Hy(t) :=A{z | |a| = t, Vi a; < d;}

which has cardinality H(t) (as before, Hq denotes the Hilbert function of a regular
sequence of n polynomials with degrees d = (dy, . ..,d,)).

As before let § = Y7 ;(d; — 1). Fix n and v such that they satisfy the condition

0<d—v<n<i—m<rv<i. (14)

Informally, n denotes the smaller one among n and 6 — n in the definition of
Jouanolou’s matrix and v is the analogue of the degree in the Macaulay type sub-
resultant construction. Assumption (14) ensures that we remove rows only from
the submatrices 2, and @ of J,,.

To simplify the notation we denote 7' := n — (6 — v). Using Definitions 3.1.1 we
give explicitly the sets

Mon(n,n') ={z" | la| =n, a, <7’}
Repy(n,n)={2" | |a| =n,(FI <n—1a; > d; and o, <77') (15)
or (Vi<n—1a;<d;and d, <o, <n' +d,)}

Next we define the subresultant matrix J,, , (f).

Definition 3.1.2 Let f = (f1,..., f.) € Rlxy,...,x,] be generic homogeneous
polynomials of degrees d = (dy,...,d,). Fix n and v such that 0 < § —v < n <
d—n<v<dandletny =n— (6 —v). The R-module homomorphism

T (f) + (Mon(n, 1'))" ® (Repy(d — n)) — (Mon(d — n)) & (Repy(n,7))"

corresponding to the subresultant matrix is defined as follows. Let €2, , be the
restriction of §,, (defined in (6)) to (Mon(n,n'))*. Let ®} ., be the dual of the map

13



Dy | (Rep, () (defined in (7)) restricted to (Mon(n,n'))*. Then J,,(f) is defined as

(v, 27) = () + Doy (%), @5, ()

for y* € Mon(n,n')* and 2° € Rep,(d —n). Abusing the notation, we denote the
matrix of the map J,,,(f) again by J,,,(f).

Permuting rows and columns, the matrix J, ,(f) has the following structure:

Mon(6 —n) Repy(n,n')*

W o* | Mon(n,n')*
Ju(f) = " "

@5y 0 Repy(6 —n)

As we mentioned earlier, the matrix J,, ,(f) is a submatrix of J, (f), obtained by
erasing the rows corresponding to the monomials in Mon(n, ") and the columns
corresponding to the monomials in Rep,(n, n’). Therefore, the difference between
the number of columns and rows of J,, ,(f) is

#Mon(n,n') — #Repy(n,n') =#Mon(n — ') — #Repy(n — ')
=#Mon(d — v) — #Rep, (0 — v)
:Hd((s - l/)
:Hd(l/).

Example 2.1.1 (cont)

Let n =3, d = (3,3,2) and f = (f1, f2, f3) as in Example 2.1.1. As in the previous example we set n = 2. For
v=20=>5 we have n =n — (6 —v) = 2, therefore we erase all rows of J2(f) in (13) corresponding to monomials
which have degree 2 in the variable w. That is, we erase the single row corresponding to w?. Since de(Q, 2) =0,
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we do not erase any columns. Thus the subresultant matrix J2 5(f) has size 10 x 11:

Hu2 53 M2 020 K2 220 K2 g2 M2 s M2 o020 M2 030 K2 o2 K2 020 Ky2 030 €0

Hou,a3 Pou,z2y Pou,a2z Fou,ay?2 Poweyz Foy 022 Pouy3 Houy2z Pou,yz2 Pow,z3 €1

Fowu,a3 Pwu,a2y Puwu,a2z Pou,ay? Pww,eyz Fyy 222 Ppu,yd Pou,y2z Pou,yz2 Fow,23 €2

Hoy2 08 Hy2 32y K2 02, Hy2 002 B2 o0n M2 5,2 M2 8 K2 02, K2 .2 KB 3 c3

Papo,e3 Fuwv,a2y Pwv,e2z Pwv,ey2 Fwvoyz Poyg 222 Fugy3 Pao,y2: Pwo,ye2 Pwe,z3 €4

ag ay ag as ayg as ag a7 ag ag 0
co c1 co c3 cq cs 0 0 0 0 0
bo by by bs by bs be by bg by 0
0 co 0 c1 c2 0 c3 cq cs 0 0

L 0 0 co 0 c1 co 0 c3 cq cs5 o |

For v = 4 we have ' = 1, therefore we erase all rows which correspond to monomials of degree at least 1 in the

variable w. Again, Repy(2,1) = 0, so we do not erase any columns. Thus the subresultant matrix Jo 4(f) has size
8 x 11:

(102 23 M2 02y By2 520 Ho2 g2 B2 gy M2 522 B2 03 K2 g2 K2 o2 Hy2 .3 €0 ]
Ky, z3 H1)':.0,1:21; Hvu,a‘?z Mvu,myQ Hou,zyz Fooy 022 Hvu,y3 H1ru,y2z ‘u"uu,yz2 Hyn, 23 €1
:u'vZ)IS ‘uuz,zQy IJ‘,UQ’IQZ MU2,I‘£/2 1 Z,Iyz ‘uv2,222 ‘uu2,y3 /‘Lv2=y22 Hv2’y22 Mv2,23 c3
ag ay ag as ayq as ag a7 ag ag 0

(16)

co cy co c3 cq cs 0 0 0 0 0
bo by by bs by bs be by bg by 0
0 co 0 c1 co 0 c3 ca cs 0 0

L 0 0 co 0 c1 co 0 c3 cq cs5 0

and the rows correspond to the monomials
[uQ vu v2 23 22z o3 2%y z3} )

while the columns still correspond to the monomials

[:BS yr? zx? y’x 2yx 22z y® Y2z 2%y 28 w2} a

We will use the following lemma throughout the paper.

Lemma 3.1.3 If®, is the map defined in (7) then the restriction of ®, to (Rep,(n,n'))
has its image in (Mon(n,n')). In other words, the matriz ®; of the dual map has

15



the following structure:

Rep,y(n,m')*  Repy(n,n')*

* 0 | Mon(n,n')*

_ nn’
<I>77 =

Mon(n,n')*

Proof.
Let 2% € Repy(n,n'), i.e. |a| = n,a, > n' and either there exists ¢ < n — 1 such
that a; > d; or o, > 0 + d,.
Case 1: The smallest index i such that «; > d; is not n. Since z* € Repy(n,7'), the
image

2,(a%) = 5 f

7
Z;

has degree at least 0’ in x,,, therefore all terms of ®,(z®) are in Mon(n,7’).
Case 2: The smallest index 7 such that a; > d; is n. In this case a,, > d,, + 17/, thus

(67

x
deg,, -+ fo 21"

Again, all terms of @, (z*) are in Mon(n,n’). ®

Lemma 3.1.4 The matriz @, ,, has at least as many rows as columns.

Proof.
First consider the case when d,, < n’. Let

A:=Mon(n,n') — Repy(n,n') ={z% | |a| =n, Vi<n—-1 a; < d;, and 0 < o, < d,}
B:=Repy(n,n') —Mon(n,n') = {z* | |a| =7, Vi<n -1 a; <d;, and ' < o, <77’ +dp}.

Note that |A| = Ha(n), |B] = Ha(n — 1) = Ha(0 — v), and their difference is the

difference between the number of rows and columns of ®; ,. By the assumption
0<d—v<n<d—n<v<4§wehave Hy(d — v) < Hq(n) (using the fact that
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H,(t) is monotonically increasing in the interval [0, | 2]]).

2
In the case when 1’ < d,, we have

A=Mon(n,n") — Repy(n,n) ={x | |a| =n, Vi<n -1 a; < d;, and 0 < v, < 7'}
B =Repy(n,n') — Mon(n,n') = {z* | |a] =n, Vi<n—1 a; < d;, and d, < o, <1’ +dp}.

In this case |A| = Hy(n) and |B| = Ha(n — d,,) where d' = (dy,...,d,—1,7). Let
§ =" (d; — 1)+ (' —1). Then it is easy to check that 7 < v implies that either
n<|%]orn—d, <& —n<|%]. This implies that Ha(n — dn) < Ha(n) (using
the fact that Hg (t) = Ha (6" — t) and the monotonicity of Hy (¢) in [0, [5]]). m

Definition 3.1.5 Let T C Mon(d—n) of cardinality H4(v). Denote by M (f) the
maximal square submatrix of J,, ,(f) with columns not corresponding to monomials
inT.

Example 2.1.1 (cont)

Continuing the previous example, for different 7"s the matrix Mgfl(f) can be any maximal square submatrix of
J2,4(f) in (16) which contains the last column. In this case H (3 3 2)(4) = 3, therefore T C Mon(3) must have

cardinality 3. For example T := {x3,y>, 23} we get that M?;g 3 23}(f) is the following 8 x 8 matrix

K2 22y Hy2 g2, Hyu2

wy2 Pu2 pys Hu2 222 B2 42, 2 .2 €0

u?,yz
M'uu,mzy 'u"vu,mzz u’vu,zyQ Hou,zyz Mvu,zzZ M'Uu,y2z Muu,yz2 €1
Ky2 52

y Po2,222 Fo2 ay2 Ho2 gyz P2 222 Fo2 422 Hy2 422 €3

ay ag as agq as a7 ag 0

B
c1 c2 c3 cq cs 0 0 0
by b2 b3 by bs b7 bs 0
co 0 cy co 0 cy cs 0
L 0 co 0 c1 c2 c3 cq 0

In the following proposition we prove that there exists T such that MJZ”(f) is
generically non-singular.

Proposition 3.1.6 Let n > 2, f = (f1,..., fn) be generic and let 6, v, n and
n =n— (5 —v) be as above, and assume that 0 < —v <n<d—n < v < 4.
Then there exists T C Mon(d —n) of cardinality Hy(v) such that for generic f the
matriz MY (f) is non-singular.

Proof.
For a fixed T, to prove that M7T"(f) is non-singular for generic f, it is suffi-

cient to find a specific system f = (fi,..., fn) of degree (di,...,d,) such that
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det(M7"(f)) # 0.

First consider the system f := (z{',...,2%). Then Jouanolou’s matrix J,(f) cor-

responds to the identity map (cf. [12]). The matrix MZ7"( f) is obtained from
J,(f) by deleting rows corresponding to Mon(n,n’) and columns corresponding
to T'U Rep,(n,n'). Unfortunately, the removal of the rows Mon(n,n’) may leave

the submatrix ®; ,(f) of deficient rank with zero columns.

We shall construct a system [’ := (... ,xi’ff,ﬁ) for some p € klzy,...,z,a,
such that @ (f’) has full rank. Let

C:={z%||a|=n,Vi<n—-1 o; <d;, and d,, <, <7 +dy}
Riz{xa||a|:1’], Vzﬁn—l Oél'<di, and0§Qn<77’}.

Note that m%n -C =Hg(n—d,) and R = Hy(n) where d' = (dy,...d,—1,7'). Also

note that C'is the set of monomials multiplied by f,/x% in the map ®,,, and that
C contains the set of monomials corresponding to the zero columns in ®; ., (f).
Consider the R-module homomorphism

Vp : (Ha(n — dy)) — (Ha (1)) ,

x¥—=atp mod (z{*,..., 2]} ),
By [15, Corollary 3.5 and Theorem 3.8.(0)], if we take
pi= (214 +x,)™

then the matrix of the map 1; has full rank. For ¢’ := § — d,, + 1/, the inequality
n < v implies that either n < L%/J orn—d, <§ —n< L%/j Using the fact that
Ha(t) = Ha (6" —t) and that Ha(t) is monotonically increasing in [0, |$]]) we get
that Ha (n — d,) < Ha(n). Therefore, the map 1); is injective.

For f':= (z,... ,a:i"_’ll,ﬁ) the matrix (I):z,n’(f,) has a block triangular form with
a block of the identity matrix corresponding to the columns Rep,(n,n') — C and a
block of the map ¥ corresponding to the columns C. Therefore ®; /') has full
column rank.

Finally, the matrix J,(f") has full row rank (note that the Bezoutian of fis
the same as the Bezoutian of f = (x{',...,2%)). This implies that J,,(f’) has

also full row rank (using Lemma 3.1.3). Since we just proved that the columns
of J,,(f") corresponding to Rep,(n,n’) are linearly independent, therefore there
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exists a subset 7" of Mon(d — n) of cardinality H,4(v) such that after erasing the

columns of J, ,(f’) corresponding to 7' we get a nonsingular matrix M7%"(f'). m

3.2 Definition of subresultants

In this subsection we define square submatrices of Jouanolou’s resultant matrix
J,(f) (see Definition 2.2.5) such that the ratio of their determinants gives the
subresultant.

As in Definition 3.1.5, fix 7" C Mon(é — n) of cardinality Hy(v) and denote by
M’} the submatrix of J,,(f) with columns not belonging to 7'. Similarly as in
Theorem 2.2.6, for ¢t > 0 let E; denote the submatrix of ®; (see Definition 2.2.5)
with rows and columns corresponding to monomials in Dody(t) (see Definition
2.2.2). We define E, , to be the submatrix of ®; such that its rows and columns
correspond to Dodg(n) N Repy(n, 7). Note that E, ,/ is a submatrix of @7, since
for z* € Dodgy(n)NRep,(n, ') there exists i < n such that a; > d; therefore oy, < 7/
by the definition of Rep,(n,7') (see (15)), thus z* € Mon(n,n’). Also, by Lemma
3.1.3 we have that

_ det(E,)

n det(E(;_l,)'

Moreover, both E;_, and E, ,, are generically non-singular (cf. [13]).

det (Enm/ )

Definition 3.2.1 Using the above definitions of M}, E;s_, and E, ,» we define
the subresultant I'"%"(f) corresponding to T by

det(M%")
| = T .
7 (f) det(Es_,) det(E,,)

(17)

Example 2.1.1 (cont)

Continuing the previous example, we have Dody(t) = 0 for any ¢ < 5, therefore, if 0 < < 5, then the denominator
of (17) is 1. For n = 0, Jouanolou’s matrix contains a single row of Bezoutian type, therefore there is only one
possible subresultant matrix Jo,5 obtained by removing this one row. Then Jg 5 is a Macaulay type subresultant
matrix, which has size 20 x 21. Note that for v = § — n we always get a Macaulay type subresultant matrix. We
cannot include here Jo 5, only Es. Since Dod 3 3 2)(5) = {2322,y322}, therefore E; has size 2 x 2:

aog ag
bo bg

0,5
det(M”)
aogbg — agbo

Thus, for any T'C Mon(5), |T| = 1, we have

r9°(f) =
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First we show that I:” is a polynomial in the coefficients of fi,..., fu.

Proposition 3.2.2 Let f; = 3 |4=4; Ci, o™ be polynomials with parametric coeffi-
cients for 1 <i <mn, and let 5, v, n, ', T be as above. Assume that 0 < § —v <
n<dé—n<wv<d. Then I'}7(f) is a polynomial in the coefficients c; o (Ja] = d;).

Proof. Similarly as in [6, Lemma 3.4], using the block structure of the matrix
MY we can write

det<M%V) = Z €51,5, * Mgy ~ Mg, - mgl,Sg (18)
51,52

where the summation runs through all subsets S; C Mon(é —n) — T and Sy C
Mon(n,n") both of cardinality Hg(n) — Ha(v). Here €g, 5, = £1, mg, is the de-
terminant of the submatrix of @;_" with columns not corresponding to S;, mg,

is the determinant of the submatrix of ®; , with rows not corresponding to Sz,
and mg, g, is the minor of Q%’"/ with columns corresponding to S; and rows cor-
responding to S». Here ®57 and Q%" denotes the submatrices of Ps_,, and €,

respectively, such that the columns corresponding to T" are removed. Note that
Ha(n) — Ha(v) > 0 by the assumption 0 <n < §—n <v <9 (cf. [6]).

To prove that T7:7(f) is a polynomial, first note that for all S; C Mon(6 —n) — T
of cardinality Hq(n) — Haq(v) we have

ms, = det(Es_,) - Ay r

where Ag:ﬁT is a Macaulay type subresultant and is a polynomial by [3]. Therefore
det(Es_,) divides mg, for all Sy in the summation in (18).

On the other hand, to prove that det(E,, ) divides mg,, note that by Lemma
3.1.3 the matrix ®; has a block-triangular structure. Therefore, for every Sy C
Mon(n, n') of cardinality Hq(n) — Ha(v) and every Sz C Mon(n,n’) of cardinality
Ha(v), the determinant of the submatrix of ®; with rows not corresponding to
52 U Sg is
Ms,us; = Mg, " Ms;.

where mg, is the minor of ®5_ with rows not corresponding to Ss. But mg,us, =
det(E,) - A% g, and mg, = det(Es_,) - A% ", therefore

B det(En)Aggus3

A"
= = det(E,, ) —225% 19
det(Eg_V)Ag;V ( nn ) ( )

o—v
A,

m So

Now we apply the same trick as in [6, Theorem 3.2]. We can use two different sets
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of parameters (b;.a)|jaj=¢, and (¢i.a)|jaj=q, to define two generic polynomial systems
f* and f¢ and to consider the matrix

Rep(n,n')  Rep(n,n)

o () 0 Mon(n,7')
r(f, f) =

®:_(f¢) | Mon(n, 1)

Now

AL b fe
ms, (f") = det(Byy (f)) - W

and both sides are polynomials in (b;,) and (c;,), so we deduce that A% "(f°)

divides A% g, (%, f€), therefore det(E,,,)(f®) divides mg,(f*). This proves that
7 (f) is a polynomial. m

Next we prove that I":"(f) has the same degree in the coefficients of f; (1 <1i < n)
as the Macaulay type subresultants A% (S C Mon(v), |S| = Ha(v)).

Proposition 3.2.3 Let f; = Y jq=q, Ciar® for 1 < i < n, and let 0, v, 7, n,
T and T77(f) be as above. Assume that 0 < n < 6 —n < v < §. Then for
any fized 1 < i < n, TH(f) is homogeneous in the coefficients ¢;o (|oo| = d;)
of degree Hy(v — d;). As before, H; denotes the Hilbert function of a regular

sequence with n — 1 homogeneous polynomials in n variables with degrees di =
(dh ce ,difl, dl'Jrl, Ce 7dn)

Proof . SIMPLIFY!!! As in the previous proof we write

n,v — C
det(MT ) - Z €81,82 " Mg, ~ Mg, ~ Mg, g,
51,52

using the same notation as in (18).
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We define the sets
Ji(t) :={z"| |la| =t, a; > d; and Vj#ia; <d;}.

for 1 <i¢<nandt>0. Weclaim that

deg,, (ms,) —deg,, (det(Es_,)) = #Ji(6 —n) (20)
deg,,  (ms,) — deg,, (det(E,,)) = #Ji(n) — #Ji(n — ') (21)
degci,a(mcsl,sg) = Ha(n) — Ha(v). (22)

Equation (20) was proved in [3]. Equation (22) follows from the fact that each
entry of €, ,» has degree 1 in ¢; ,. To prove equation (21) we denote

Rep () = {2 | la| =0, o; >d;, Vj<ia;<dj, a,<n} i<n-—1

Rep&n)(n,n') ={z%||al=n, Vj<nao; <dj, d, < o, <1’ +d,}.

Then clearly
deg,,  (ms,)—deg,, (det(E,,)) = # (Rep{(n,n') — Dodu(n)) = #Ji(n)—#Ji(n—1)

for all 1 <i < n, which proves (21).

Therefore,

deg,, (U7"(f)) =#Ji(n) + #Ji(6 — n) + Ha(n) — #Ji(6 — v) — Ha(6 — ).
Define the sets
Hy(t):={z" | |a] = ¢, Vj a; < d;}
Hy(t):={z" [ la| =1, Vj #ia; < d;}
of cardinalities Hq(t) and H ;i (t), respectively. Also, for ¢’ <t we define the set
Hy(t,t) = {2 | || =1, oy <t', Vj#ia; <d;}

of cardinality H; (t) — Hz(t —t').
First we consider the case when n < v — d;. We give a bijection between
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H;(v—d;) < Hz(n,n') U J;(6 —n). (23)
Let 2% € H; (v —d;). If 35,05 <8 —n — d; then for

o = (o, 01,0 = — > Ay, Qg -, )
J#1

2 is in J;(6 —n) (since § —n — 32, ; > d;). Moreover, since § —n — d; < v —d;,
we get all the elements of J;(6 — n) this way.
On the other hand, assume that 6 —n—d; < >°;; a; < v—d;. Define a;- =dj—1-q;
for all j # i. Then

n+1>Y o >0—v+1,

J#i

therefore by defining oj := n — 33;; ) we have that o <n —(§ —v+1) <7,
thus ' € Hj(n,n'). Moreover, since ) < v — d;, all the elements of H (n,n') can
be obtained this way, which gives the bijection in (23).

To obtain the claim of the proposition for the n < v — d; case, we assert that

Hy(v —di) =#Ji(0 — 1

using the fact that H(t) = J;(t) U Hy(t) for t > 0.

Secondly, we consider the case when n > v — d;. We give a bijection between the
discrete unions

Hyu(v—d;,))U" Hy(6 —v) < Hz(n) U J;(6 —n). (24)
Let 2% € Hy(n). If 35, a; < v — d; then for

/
o :(0417“-7061'—1,7/—61@'— E Oéj,Oéi+17-~,Oén)
J#i

we have 2% € H ji(v — d;). Moreover, since v — d; < 1), we get a bijection between
the sets

{z% € Hyz(n) | gajgy—di}HHAi(y—di). (25)
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On the other hand, assume that v —d; < 32;;a; < 7. Define o := d; — 1 — o
for all j # 7. Then
b—v+1>) o >6—n—d+1
J#
Therefore, by defining o := 0 — v —37;; ) we have that of <n — v +d;, thus

e € Hy(6—v) = {2 | |Bl=6—v, Bi>n—v+d,Vj#£i B <d;}.
Observing that
{2 18 =0 —v, Bi2n—v+di,¥j#i f; <d}=Hu(0—n—d)

and that ]
d;

xT;

(6 —m) = Hy(6 -y — di)

we get a bijection between

{z% € Hy;(n) |y—di<2aj}UJi(6—n)<—>Hdi(5—y). (26)
i

The bijections in (25) and in (26) give the bijection in (24). Again, we obtained
that

Mg (v —di) = #Ji(6 = n) + Hs(n) = Hg (0 —v) = deg,,  (T77(f)).

This proves the claim of the proposition in the n > v — d; case. B

The next proposition states that the non-vanishing of I'”(f) implies that certain
polynomials with Hy(v)+1 terms are in the ideal (f1,. .., f,). This property allows
the subresultants to be used in the solution of polynomial systems (see [10] and

[16]).

Proposition 3.2.4 Let fi,..., f, C Rlxy,...,z,] be generic polynomials, and let
5, v,nandn =n—(d—v) be as above. For any fired T' C Mon(§—n) of cardinality
Ha(v) the following statements hold:

(1) for all z* € Mon(6 —n) — T
zl (T?r’”ﬂf“+ > el (”?u{ma}—{xﬁ}f”ﬁ) € (fi(@)s.. fala)) (27)
zPeT

where eg = £1 and (f1(x), ..., fu(z)), denotes the degree v homogeneous part
of the ideal (fi(x),..., fu(x)).
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(2) For all z* € Mon(6 —n) — T and for all z7 € Mon(n + 1)
z” (F%an + Z Eﬂrl(lgu{ma}_{mﬁ})xﬁ) < <f1 (x)v s »fn($>>6+1 (28)
zPeT
where eg = 1.
To prove Proposition 3.2.4 we need two lemmas.

Lemma 3.2.5 Let R be a domain with fraction field K and let T C K|xq,. .., 2,]
be an ideal. Let

M = B C

be a matriz, where B = (b;;) € R™™ and C = (c;myj) € RS, Suppose that the
columns of B correspond to the monomials (z*M) ... 2™). Assume that there

exist elements (ay,...,as) of K such that for all 1 <i <1 we have

s

Z bz‘vjll/’a(j) + Z A5Ci m+j el (29)
j=1

j=1

Fiz r rows of M for some s+1 <r <min(l,m+s). Then for any S C {1,...,m+
s}, such that |S| =r —1 and {m+1,...,m+ s} C S, we have

> (=170 Dy 22V € I, (30)
Jé¢S
where Dx denotes the determinant of the submatriz of M corresponding to the

fixed v rows and the columns indexed by X for any set X C {1,...,m + s} with
cardinality | X| = r, and 0(j,S) denotes the ordinal number of j in the ordered set

Su{j}.

Remark 3.2.6 Note that the polynomials 3,z & Dsugs 2*U) in (30) do not
depend on the elements (ay,...,as). In order the claim to be true it is sufficient
that such elements exist.

Proof of Lemma 3.2.5.

We can assume without loss of generality that M consists of only r rows. Note that
condition (29) is equivalent to the fact that for any I = {iy,... i1} C{1,...,7}
we have
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bll(l’) ce Ciy
Yr(x) := det : €T,

bis+1 (l’) ce Cis+1
where b;(z) := X7, b; j2°0) and ¢; is the i-th row of C.

Fix any subset S of cardinality r—1 such that {m+1,... , m+s} C S C {1,...,m+
s} and denote by S" := SN {1,...,m}. Then the claim of the lemma follows from

ST (=170 Dy iy 220 = ST (=1)7D det(Br g )i (2), (31)
igs Ic{1,..,r}
[I|=s+1

where for each subset I = {iy,...,i,1} C {1,...,7}, Bfg denotes the submatrix

of B with rows indexed by I := {1,...,r} — I and with columns indexed by S’.
(31) can be proved by using a straightforward linear algebra argument. m

Lemma 3.2.7 Let fi,..., fu, 0, v, n, 0" be as above and consider the map ®; .

(Mon(n,n'))* — (Repy(n,n'))* defined in Definition 3.1.2. Denote by D the column

vector
(z"Morlg(z))

y#eMon*(n,n') ?

where 7 is any fived element of {7} UMon(n 4+ 1). Then any mazimal minor of
the (#Mon(n,1')) x (#Repy(n,n') + 1) matriz

mn

is in the ideal {fi(x),. .., fo(x)).

Proof of Lemma 3.2.7. First we prove that the statement holds for 27 = 2.
By [12, 3.11.11] (see also Theorem 2.2.6.(10)) we have that

) >, y’Morlg(z) — yl > y"Morl, (z)
y#€Mon*(n) yYEMon* (6§—v)

is in the ideal (fi(z),..., fu(z), f1(y), ..., fu(y)). Therefore, there exist polynomi-
als ¢;(z,y) (1 < j <n) of degree n — d; in y such that
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" > y’Morls(z) —y7 > y"Morl, (z Z z,y)f;(y) (33)
yB€Mon*(n) yYEMon* (§—v) Jj=1
is in the ideal (fi(x),..., fu(x)). Write
S (gl ) fily) mod () = > Qula)y’,

j=1 y#eMon*(n,n’)

and let E be the column vector (Qs()),semon* (n,y)- Then E is in the column space
of the matrix ®; ., therefore all of the maximal minors of the matrix

E| &, (34)

nn

are zero. Finally note that by (33) the maximal minors of the matrix (32) and of
the matrix (34) are congruent modulo (fi(x),..., fo(x)), which proves the claim
for 27 = a7 .

The proof for the 7 € Mon(n + 1) case is similar, using the fact that by [12,
3.11.11] (see also Theorem 2.2.6.(10)) for all ¥ € Mon(n + 1) the polynomial

7 - 38 eMon* () Morlg(x)y? is in the ideal (fi(z),..., fu(x), fi(¥),. .., fu(y)). W

Proof of Proposition 3.2.4. Using Lemma 3.2.7 it is easy to see that the matrix
J,.(f) satistfy the conditions of Lemma 3.2.5, with

B— Q. C = (I);;,n’
s, 0
and the columns of B correspond to the monomials {z7z” | |3| = § — 1} where

x7 € Mon(n + 1) U {27} is fixed. Note that for any T C Mon(§ — 1) of car-
dinality H4(v) the subresultant I'}7(f) is equal to det(Es_,) - det(E,,/) times
the subdeterminant det(M}") by Definition 3.2.1. Therefore the statement of
Lemma 3.2.5 implies that det(Es_,) - det(E, /) times the polynomials in (27) and
in (28) are in the ideal (f1,..., f,). Using the fact that det(E;_,) - det(E, ) does
not depend on the coefficients of f, and the fact that for generic polynomials
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fi,ooy fn € Rlxy, ..., x,] we have

(fi,...,fa)=PNR

where R is an (21, . .., x,)-primary ideal and P is a prime ideal with RNP principal
generated by the projective resultant Resy(f) (cf. [4, Proposition 3]), we conclude
that det(E;s_,) - det(E, /) € P, therefore the polynomials in (27) and in (28) are
in the ideal (fi,..., f,). ®

Example 2.1.1 (cont)
To demonstrate the relevance of Proposition 3.2.4 we continue the examples by specifying our system. We con-
structed the specified system to have 3 common roots in the projective space:

Roots = {(z =2t,y = —t,z=—-2t),(z = —t,y=—t,z=1t),(x =t,y = —2t,z = 3t)}.
The three polynomials are the following:

. 335
=——1
f1 5

fo:= =762 + 2522y — 6522 — 60 xy® — 61 zyz + 28 222 — 306 y> — 289 y2 2z + 29 y22 + 55 23,

129
— 5322y — 6622z — 372y® — 23 xyz — ?122 48293 — 42922 — 34y2z? 4+ 3123,

= 599 995
fa:=78z%+94xy + T zz—222y% — 17Tyz + Tz 22

The subresultant matrix J2,4(f) is the following:

[ _ 1205539 _ 3082633 _ 6252151 14269385 _ 4803415 _ 19881 3308429 35326601 46953 0 78 T
32 6 32 48 24 4 2 48 4
26987179 9131089 14684647 7781405 21713761 1379793 1188664
— 20987 1 — 14684 1 13 g 541718 1188664 273508 0 94
4356593 29459477 54406673 830797 1779307 197595
Bin — 20459 210 L — 1779 272508 —1897408 — 197095 1276774 0 —222
—335 —53 —66 —37 —23 —120 82 —42 —34 31 0
599 995
78 94 b —222 —17 o 0 0 0 0 0
—76 25 —65 —60 —61 28 —306 —289 29 55 0
599 995
0 78 0 94 9 0 —222 —17 295 0 0
L 0 0 78 0 94 299 0 —222 —17 25 o |

with columns corresponding to the monomials
[333 22y 222 2y? xyz x22 P Y2z y2? 28 z2} .

Choosing T := {3, 22y, 222}, since det(M?FA(f)) # 0, by Proposition 3.2.4, T" “pseudo”-generates the factor
space Q[z,y, z}g/(f)g. Therefore, the for all monomials m € Q[z,y, z]s — T, the polynomials of the form

2,4
(Tu{m}—{23})

2,4
(Tu{m}—{z2y})

2,4 2,4
FT m+ eIl 363+62F x2y+63F(TU{m}_{x2z})12z

are not identically zero and they are in the ideal (f1, f2, f3) once multiplied by z (see (27)). These polynomials
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are
xz? — (323 + 2222), 23 — (623 +72%2),

y2? — (—4a2z — 423 + 22y), vz — (—1/222y + 19x3+23 22),

23 .3 27 22’)
)

(35)
zyz — (=223 — 22y — 2222), y3—(——a: +3/4x2%y —

zy? — (13x3+—x y—i——x z)
Then the common roots of the original system are also roots of the polynomials in (35). Because of the structure

of the polynomials in (35), one can recover the y and z coordinates of the roots at = 1 by simply computing
the eigenvalues of the matrices

01 0 00 1
13 1 9

T 2 5| ad |-2-1-27,
—2 -1 -2 3 0 2

respectively. These matrices are the matrices of the multiplication map by y and z (respectively) modulo the
dehomogenization of the polynomials in (35) at = 1, written in the basis T'|z=1. Their entries can be read out

from the coefficients of the polynomials in (35). To see more details of this method see [16].

3.8 Subresultants and Koszul complexes

The motivation for the new definitions and technicalities of this subsection is to
prove the main theorem of the paper that the Jouanolou type subresultants coincide
with the Macaulay type subresultants (see Theorem 3.3.10).

In this subsection we describe the matrix J,, ,(f) from a decomposition of a Koszul-
Weyman complex (cf. [8]). Comparing this complex to the complex corresponding
to Macaulay type subresultant matrices in [4] and using techniques developed in
6] for the complex corresponding to Jouanolou’s matrix, we will be able to prove
that the determinant of our complex equals the subresultant defined earlier.

First let us fix the notation we use throughout this subsection. Let f = (f1,..., fx)
be generic polynomials in Rz, ..., z,] of degree d = (dy,...,d,), and let 6, v, n
and ' = n — (§ — v) be such that they satisfy 0 <n < d —n < v < ¢ as above.
For any 0 < ¢’ <t < ¢ we define the following free R-modules for 1 <p <mn

Asor=( U U wenne,)

1<ip <-<ip<n :L‘O‘EMon(t—Zz:l diy)

/P\S*(t,t’)”::< U U ya-eil/\---/\eip>.

1< <--<ip<n yacMon* ( Zp

237

The grading is given by deg(x®e;, A---Ae;,) == |a|+d;, +- - -+d;,. As a convention,
for p = 0 we may write A\ S(¢)" := (Mon( )y and A S*(¢, )" := (Mon*(t,t')).
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Next we consider the following two complexes of R-modules. Fix T' C Mon(d§ — )
of cardinality H4(v). The first complex, denoted by K*(f,d —n,T), is a restriction
of the degree § — n part of the Koszul complex:

o () oF ")
- A?S(6 —n)" A'S(E =) —

We index the complex K*(f,0 —n,T) by K P(f,06 —n,T) = N’S(6 — n)" for

1<p<n,and K°(f,0 —n,T) = <Mon(5 n) —T).

The differentials of the complex K*(f,d —n,T) are given by

(Mon(6 —n) —T) —— 0(36)

o (f /\sa n)" /\85 )" (37)

for 1 < p < n, where (b(_t;?( f) is the differential of the degree ¢ part of the Koszul-
complex (cf. [4]), i.e.

P
() (es A - Aezpzz DM f (e Ao M) (38)

For p = 1 the differential gbg - (f) equals to gb(fl_ 77)( f) with its image restricted to
(Mon(6 —n) —1T).

The second complex, denoted by K*(f,n,n')*, is a restriction of the dual of the
degree n part of the Koszul complex:

(n,n")* nn)*
0 —— (Mon*(n, 7)) 2 Alse (g 2 AZge (e (39)

We index the complex K*(f,n,7')* by KP(f,n,7)* = AP S*(n,n)" for 0 <p <mn

and K°(f,n,n')" = (Mon™(n,7')).
The differentials of the complex K*(f,n,n')* are given by

-1

P ( /\S*nn —>/\S*7777

for 1 < p < n, where ngI(ﬁ’"/)* is the dual of the map ¢(—nzz|/\ps(n,n’)" restricted to
/\p—l S*(na n/)n

Consider the map 2 of complexes

QK (finn) — K°(f,0 —n,T)
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given by €, := 0 for p # 0 and € equals to the map €2, ,/ (defined in Definition

3.1.2) with its image restricted to (Mon(d — ) — T'), which will be denote by Q%7 .
Thus, we have the following commutative diagram:

* / ¢§'flﬂ7 *(f) 1 qx nn
0 — (Mon*(n,7")) ——— N S*(n,7n')" ——
o 2 | o)
1 o)
N S —n)" — (Mon(6 —n) -T) —— 0 — -

In the following definition we define the complex M®(f,n,v,T) corresponding to the
Jouanolou type subresultant as the mapping cone of the map Q (cf. [7, Appendix 3]).

Definition 3.3.1 Let R be a Noetherian UFD, f = (f1,...,fn) C Rlz1,...,z,] be
generic polynomials, let §, v, n such that they satisfy 0 < §—v <n<d—n<v <J and
let n’ =n — (6 — v). Using the above notation, define the free R-modules

1
Mt := (Mon*(n,7)) ® /\ S(6—n)",
1
Mz := (Mon(s —n) = T) & \ S*(n,7')",

and for1 <p<n

p
M~P = \S@E—n)",
P
MP ::/\S*(n,n’)".
Note that for —n < p < —1 we have
MP = KM (fon,0') @ KP(f,6 =, T)
and for 1 < p < n we have
MP = KP7H(f,6 —n,T) ® KP(f,n,1)*
where K*(f,n,n')* and K*(f,6 —n,T) are defined in (36) and (39).

Also, using the above notation, define the maps
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8,p::¢(_6(;:]_)1) for 2<p<n-—1,

6—1 =0 ¢(5—77)
A : (Q(nn +¢(5 n)@¢(nn

a ::O+¢(n777)’
19) —(ﬁl()z_q) for 2<p<n-1.

As before, Q! (") +<;5(6 " denotes the map €, —l—qb( (see Definition 3.1.2 and (37))
with its image restricted to (Mon(d —n) — T>.

The complex M*(f,n,v,T) corresponding to the Jouanolou type subresultant is defined
as the following complex of free R-modules:

0_
1 M -1 60 81

{0 - s M2 M} M? -0}

Example 2.1.1 (cont)

This example demonstrates the possible difference between the subresultant matrices defined in Definition 3.1.2
and the matrix of the differential Jy of the complex M®(f,n,v,T) in Definition 3.3.1. We also show the possible
difference between

1 n
/\S(t)” = @(Mon(t —di)-e;) and  (Repy(t)).
i=1

As before, we consider 3 generic polynomials of degrees d = (3,3,2). If 0 < < 5 then Jouanolou’s matrix J, and
all its subresultant matrices J,, are the same as the matrix of Jg of the corresponding complex.

For n = 0 and v = 5 the subresultant matrix Jo,5 has size 20 x 21 as we mentioned in a previous example. The
matrix of 9y of the complex K*®(f,0,5,T) (for any T C Mon(5), |T'| = 1) has size 22 x 21. Its rows correspond to
the 22 monomials:

[22, 2y, 22, 4, y2, 22, 2%, 2y, w2, ¥2, yz, 2%, 28, 2Py, 2Pz, wy?, wyz, w2, P, ys, pt 2P
Note that Repy(5) has the following 20 elements:

5 4, .4, 3,2 3 3,2 ,3.2 .22 3.2 4. 3 . 2 2 3 4, .5 4, .32 2.3 4 5
[mimy7$z7$y7myz7xz7y$?yx’z?zx7y$7y$z1ymz7yzz7z$?y7yziyz7yz?yz7z:|‘

Dividing x® € Rep,(5) by one of {x3,y3,22} — the first one which divides x* — we get an injective, but not
necessary surjective map of sets:

¢ : Rep(5) — Mon(2)-e; U* Mon(2)-ex U* Mon(3) - es.
In fact, the maps ®5 (see (7)) and ¢(fi (see (38)) are related the same way: while ®5 first divides x* € Rep(5) by
the first one of [23,43, 22] which divides it, and then multiplies with the corresponding f;, the map ¢>(_52 simply

’
multiplies ¢ € Mon(5 — d;) by f;. The maps @, and ¢§t’t ) relate similarly. The maps corresponding to the

Bezoutian parts are exactly the same. [J

In the following proposition we prove that the complex M*(f,n,v,T) is generically
exact if the matrix MY (f), defined in Definition 3.1.5, is non-singular.
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Proposition 3.3.2 Let f = (f1,..., fn) € Rlxy, ..., 2], 6, v, nandny =n— (6 —
v) be as above. Fiz T C Mon(d—n) of cardinality Ha(v) such that det(ME")(f) # 0.
Then the complex M*(f,n,v,T) is generically exact.

Proof.

We will prove that if f = ( fi,.. s fn) is any coefficient specialization of f with co-
efficients from some field &, and f satisfies det(M7"(f)) # 0 and ker(®;_,(f)) = 0,
then the complex M*(f,n,v,T) is exact. This implies the claim by our assumption

that det(IM7:")(f) # 0 and because the map ®;s_, is generically injective by [4].
We prove the proposition in four parts. First we prove that

)

(6=m)  F
2 Do args— e D on(s — )}

K (f6—n): {0 — K.

is exact, which implies the exactness of M*(f,n,v,T) for levels p < —2. Secondly
we prove that the complex

Y s 1\ % * ’ (bgnm/)*(f) 1 Qx* nn (1);77,71’)*(}?) n

is exact, which implies the exactness of M*( 1, n, v, T) for p > 2. Then we separately
prove that M*(f,n,v,T) is exact at the p =1 and p = —1 levels.

The exactness of K$(f,d —n) follows from ker(®s_,) = 0 by det(ME(f)) # 0,
and from [4].

The exactness of the complex K3 ( f ,m,m')* is equivalent to the exactness of the
dual complex K{(f,n,1n'). Consider the short exact sequence of complexes

0 — Ki(f.0—v) —— Ki(f.n) —— K{(f.n.n/) —— 0,  (40)

where ¢, is the multiplication map by mzl and m — p is a projection for 0 < p < n.
Then ¢ and 7 commute with the differentials of the complexes, which can be checked
easily.

We prove that the complexes K7 ( f.0 —v) and K}( f.m) are exact. The exactness
of K3(f,0 — v) follows from ker(®s_,(f)) = 0 and [4].

Moreover, if det(M7”(f)) # 0 then both ker(®;_,(f)) = 0 and ker(®,,,,(f)) = 0,
which implies that ker(®,(f)) = 0. Therefore, by [4] the complex K7 (f,n) is exact.

Also, since ker(®,,/(f)) = 0, then using Lemma 3.1.3 we can choose the set Sy C
Mon(n) such that 332/ - S1 C Sy. Therefore, if we define S5 := .S, — xz/ - S1, then we
have that the map gbg:/ : A'S(n, 7)™ — (Mon(n,n') — Ss) is also surjective. This
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implies that the short sequence of the 0-th cohomologies of the complexes in (40)
is exact:

"))
7 0.

0 (Mon(5—v)) ¢ (Mon(n)) s (Mon(n,n
Im ®5_,(f) Im ®,(f) Im @, ./ (

Now using the long exact sequence of the cohomologies (see [7, A3.8]) of the com-
plexes in (40), we deduce that K7 (f,n,n') is also exact.

To prove that M'(f, n,v,T) is exact at p = —1 we show that

ker(8p) = ker(¢; ") = Im(%5™) = Im(d_,). (41)

Recall that 9y = (") + ¢~} @ ¢{™* where Q") + %~ denotes the map
Q. + 6“7 with its image restricted to (Mon(d — n) — T'). Assume that

> aytt X b’ eker (T 4+ op )@ "

y*€Mon*(n,n’) mﬁe@i Mon(6—n—d;)

Then a, = 0 for all y* € Mon™(n,n’), otherwise we would get a non-trivial com-
bination of the rows corresponding to Mon*(n,n’) of the matrix M%"(f) which

combination is in the image CID((S P(f) (the image of ®s5_y, in (7) restricted to
Mon(§ —n) —T). This would 1mp1y that the matrix MJ"(f) is singular, a contra-

diction. Therefore ker(dy) = ker( )) But since det(M%”(f)) # 0, we have that
ker( 5? m ) = ker(qﬁw ) ), which proves that ker(dy) = ker(gb(é ") ) and the rest of
(41) follows from the exactness of K2(f,8 —v).

Finally, we prove that M*(f,n,v,T) is exact at p = 1. By det(M%"(f)) # 0 the
map (Q(M) + QS (0=m) ) @ ®; . is surjective. Therefore the image of Jp is generated
by Mon(8§ — 1) URep*(n,n’). This implies that the image of qﬁ&"’"/)*(f) is generated
by Rep*(n, 1), and by the exactness of K*(f,n,7')* we have that Im(¢{"")*(f)) =
ker (6" (). therefore Im(y(f)) = (Mon(s — 5)) @ ker(#§"""(f)) = ker(91(/))

which proves the exactness at level p =1. R

Remark 3.3.3 In the proof above we asserted that ker(®,,/) = 0 and ker(®s_,) =
0 implies that ker(®,) = 0. The other direction is not necessary true: ker(®,) =0
and ker(®s_,) = 0 does not imply that ker(®,,) = 0. A counter example is
f=(z%, ... x%). We note that the converse of the statement of Proposition 3.3.2
is also true.
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Since the complex M*(f,n,v,T) is generically exact, the following definition is
meaningful:

Definition 3.3.4 Let f = (f1,...,f.) C Rlxy,...,2,] be homogeneous polyno-
mials of degrees d = (dy,...,d,) and let 6, v, n and ' =n — (0 — v) be as above.
Let T C Mon(d —n) be of cardinality Hq(v) such that det(IM:") # 0. Let K be the
fraction field of R. We denote by DI}*(f) the determinant of the based complex of
K-vector spaces M*(f,n,v,T) @r K (cf. [8, Appendix A]).

In the next proposition we prove that D7%”(f) is equal to the corresponding sub-
resultant I”(f) defined in Definition 3.2.1.

Proposition 3.3.5 Let f = (fi,...,f.) be generic, and let 6, v, n and ' =
n— (0 —v) be as above. As before, let Es_, denote the submatriz of ®5_, with rows
and columns corresponding to monomials in Dodq(d — 1), and let E, ,» denote the
submatriz of ®; ., with rows and columns corresponding to Dodga(n) N Repy(n,n').
Then for any T C Mon(d — 1) of cardinality Hq(v) such that det(M7%") # 0 we
have

ppe _ ___det(M")

N det(E(;_n) det(E,m/) ’ <42)

and the denominator is not identically zero.

Proof:
First note that the matrix M}" is a submatrix of the matrix of 9y, and it corre-
sponds to a decomposition (see e.g. [4]) of the complex M*(f,v,n,T). Therefore,

by the definition of the determinant of a complex, their ratio A := det[(?fg ) s the
T
product of the determinants of the two complexes
. ) L 0T (43)
K3(f,6=m): {0 —— ---A"S(0 —n)" —— Sa(6 —n) —— 0},

° 1Y% * / ¢§nm')*(f) 2 qx \n

K3(finn')™ {0 —— Si(nn') NS ()" -+ —— O}
where S;(d —n) and Sy(n,n’) corresponds to decompositions of the R-modules
A'S(t)™ and A'S*(t,¢)" in the complexes K*(f,d —n) and K*(f,n,n')* respec-
tively (see (36) and (39)). For example, similarly to [4], we can choose the decom-
position of A'S()" for any ¢ > 0 to be

1
AS®)" = Sa(t) + (Repy(t))
where Rep/,(t) = {xa/xj('g;) | 2% € Rep,(t)}. Also, we can decompose A' S*(n,n')"
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for 0 <t <tinto

NS (8 t)" = Si(t.t) + (Repy(t, ¢')")

* d; *
where Repj(t,#')* = {y° /y;(5) | v° € Repj(t,1)}.

Clearly neither of the complexes in (43) depend on the choice of T'. Therefore it is
enough to prove the claim for a fixed T' of cardinality H4(v) such that det(IM:")
0.

It follows from [4] that the determinant of K3(f,d —n) is det(Es_,(f)), and it
is not identically zero. On the other hand, as we have seen it in the proof of
Proposition 3.3.2, the complexes K3(f,d — v) and K3(f,n) are generically exact,
and by [4], their determinants are det(Es_,(f)) and det(E,(f)) respectively, and
neither of them is identically zero. Using [8, Appendix A, Lemma 5] and the exact
sequence of complexes in (40), we get that the determinant of K35(f,n,7n’) is the

ratio 552 But by Lemma 3.1.3 det(E,(f)) = det(Eyy(f)) - det(Bs (),

therefore,
det(M") det(M") det(M}")
Dy"(f) = —(f) = q (f) = . (f). =
g A det(E(;,n)dgf(té?j)u) det(Es—p) det(Eyy)

Before we state the next corollary we include the definition of multiplicity of a
finitely generated R-module along a prime ideal p C R from [8].

Definition 3.3.6 Let R be a Noetherian UFD and p C R be a prime ideal. Denote
by R, the localization of R at p with maximal ideal m, and with associated field
k, = Rp/m,. If M’ is a finitely generated R,-module, then we say that M’ has
finite length if there exists i > 0 such that mfo - M'" = 0 and for such M’ the
multiplicity of M’ is defined

multy, (M') =Y dimy, m}, - M’ /m - M.

For a finitely generated R-module M, denote M, = M ® R,. Then we define the
multiplicity of M at p by

mult, (M) = {multmp (M)  if M, has finite length

otherwise

We also included the definition of the order of a polynomial with respect to a
prime:
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Definition 3.3.7 or p € R prime and for ' € R we define ord,(F') to be the
highest power i such that p' divides F.

Corollary 3.3.8 Let f = (f1,...,fn) C Rlxy,...,z,] be generic polynomials
where R is a Noetherian UFD. Let d = (dy,...,d,), 6, v, n and 1’ be as above.

Let T C Mon(6 — n) be of cardinality Ha(v) such that TR (f) # 0. Then for any
prime element p € R we have

n—1

ord,, (I (f)) = > (=1)'multe,) (H'(M*(f,n,v,T)))

i=—n

where H'(M*(f,n,v,T)) denotes the cohomology module ker(d;11)/Im(d;) (defined
in Definition 3.3.1). &

The next lemma is used in Theorem 3.3.10 at the end of the paper. It can be
viewed as the converse of Proposition 3.2.4. Its proof is an easy consequence [12,
3.11.11 and 3.8.2.9], and we leave the details to the reader.

Lemma 3.3.9 Let f = (f1,..., fa) be generic polynomials in R[xq,..., x,], and
let 0, v, n andn' =n— (0 —v) be as above. Let p € R[xy, ..., x,] be a degree 6 —n
polynomial such that

Then there exist ag € R for all z° € Mon(n,n') such that

Reso(Np(x) = Y agMorly(x)

zAeMon(n,n’)

is i (fr(x), ..., fu(z))s—n-

Moreover, the if we denote by a the vector (ag)ysemon(yyy, and by b the vector of
the coefficients of the polynomial (x” fi(x) mod 27) € (Mon(n, 7)), then a”b =0
for any x¥ € Mon(n — d;) and 1 <1i<n.

Finally, we prove the main theorem of the paper, that the subresultants defined
using Jouanolou’s matrices are the same as the ones constructed from Macaulay
type matrices.

Theorem 3.3.10 Let R be a Noetherian UFD, f = (f1,..., fa) C Rlz1,...,2,] be
generic polynomials, let §, v, n such that they satisfy0 < d—v <n<dé—n<v <6
and letn =n — (0 —v). For any set T C Mon(d — n) of cardinality Hq(v) define
the set S := 2" - T C Mon(v). If T (f) is not identically zero then

P77 (f) = As(f),
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where AL(f) is the Macaulay type subresultant (see [{] and subsection 2.1). Note
that this also implies that T (f) does not depend on 7.

Proof: We shall prove that for any prime element p € R

ord, (I77(f)) < ordp(A5(f))- (44)

Then (44) implies the claim of the theorem since by Proposition 3.2.3 we have that
foreach1 <i<n

deg, (U77(f)) = deg,(AS(f)),
therefore I (f) must be equal to A%(f).

For p = Resy(f) the inequality (44) holds since

OrdResd(f)(F%V(f)) = OrdResd(f)(AE(f)) =0

by comparing degrees.

Let us assume that p # Resy(f). To prove (44) first note that both sides of (44)

are of local nature, so we can assume that R is a local ring with maximal ideal

(p) and associated field k = R/(p). To simplify the notation, for any R-module

M and for any i > 0 we denote the k-vectorspace p’ - M / pi™' - M by
pi(M):=p"- M [p™h- M.

Also, for a matrix M = (m,,)"_, € R* we denote by p;(M) the matrix

pi(M) = (p'ms; mod pi+1)]§,’§=1 e pi(R)™.
Using Definition 3.2.1 and [3] we have that
ord,(I'}"(f)) = ord,(det(M7}”)) — ord,(det(Es_,)) — ord,(det(E,,,/))
ord, (A%(f)) = ord,(det(M% ")) — ord,(det(E,)),
where M‘;—”’” denotes the submatrix of Js_,,(f) with columns not belonging to
S, and Js5_,,(f) is the Macaulay type subresultant matrix of degree v (as a spe-

cial case of Jouanolou type subresultant matrices). Moreover, by [8, Appendix A,
Theorem 30] and Definition 3.3.6 we have that

ord, (det(M7")) = mult, (Coker M7") = > dimy p;(Coker M),

i>0
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where M':” also denotes the k-linear map corresponding to the rows of the matrix
MZ”. Similar equations hold for ord,(det(M& ")) and for ord,(det(E;) for any
t>0.

To simplify the notation we denote

k := dimy p;(Coker E5_,) >0 (45)

and
[ == dimy p;(Coker E, ) > 0. (46)

Fix some ¢ > 0. Let By C Repj(n,n') be such that the corresponding columns
of pi(®;,,) form a basis (over k) for the column-space of p;(®; /) (for @7  see
Definition 3.1.2). Let By C Mon(d — 1) — T be such that the columns of p;(IM’")
corresponding to By U By form a basis for the column space of p;(IM’+"). Let C :=
Repy(n,n') — By and let Cy := Mon(d —n) — T — Bsy. Then

|C1| + |Cs| = dimy p;(Coker ML),

The claim (44) follows if we prove that for any i > 0
ICy| +|Cy| — k — 1 < dimy p;(Coker M%) — dimy p;(Coker E, )

which, by [4], is equivalent to

|Ch] + |Co] — k=1 < dimy p;(Mon(v)) — dimy (p;(S) + pi(f1,. .-, fu)v). (47)

We prove (47) in two steps:
Claim 1: There exists a subspace V; C p;(Mon(v, 7)) (see Definition 3.1.1) such
that

dimy (V1) 2 [Co| =k, and Vi 0 (pi(S) @ pilfr,- ., fu)y) = {0} (48)

Claim 2: There exists a subspace V, C p;(Mon(v, 7)) such that

dimy (V) = [Ch| =1, and Vo 0 (pi(S) © pilf1,- -+, fu)y) = {0} (49)

Clearly, Claim 1 and Claim 2 imply (47), thus also the claim of the theorem. We
will prove Claim 1 and Claim 2 separately using Lemma 3.3.11 and Lemma 3.3.12
below. m
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Claim 1 follows from the following lemma:

Lemma 3.3.11 Using the notations and assumptions introduced in the proof of
Theorem 3.3.10, define the k-space

Vo= (p(S) @ pilfr, oy fad) N pila? - Cy). (50)
Then V' has dimension at most k.

Proof of Lemma 3.3.11: By the definition of V in (50), for any element z7 -q(z) €
V' there exists ¢, € k for all 27 € T" such that

vl q(x) + 3 ea ot €pilfi o fad

zYeT

Note that we used the fact S = z7 - T. Therefore, we can define the natural
projection

TV = il fa)y N - Cy)
with fibers in p;(S). Note that 7 is injective on p; (27 Cy) since 27 Cy NS = (). Let
r(z) € R[z]| be an inverse image of some element of ﬁ -m(V), ie.

n

r(z) =q(x)+ > ¢y 27 mod p't!
zVeT

for some x7 q(x) € V. Since 27 r(x) € (f1,..., fa)y, applying Lemma 3.3.9 we get
that there exist ag € R for all 2% € Mon(n, ') such that

Resq(f)r(z)+ Y. agMorlg(z) € (fi,..., fu)s—y-

P eMon(n,n’)

Moreover, by the second claim of Lemma 3.3.9, we have that the matrix product

T *
(aﬁ)yﬁeMon*(n,n/) ’ (1)77:77, =0.

Thus the rows of the subresultant matrix J,, ,(f) span the vector corresponding to
the coefficients of Resq(f)r(z) plus some polynomial in (fi, ..., fn)s—y,. Therefore,
using the fact that Resy(f) is a unit in R by assumption, there exist a projection

Ty % (V) = pilf1, -5 fu)o—n

In

such that the fibers of my are in p;(Im €,/ & @f],n,). Note that 7y is injective on
pi(Cy) since elements of p;(Cy) are not in p;(Im Q, v & P ).
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Since the fibers of the projection — - m o T are in p;(Im Q%”l © ®; ), therefore

n

we must have

(o - om)(V) N pi(lm @) = {0},

Tn
otherwise there exist non-zero elements of p;(Cy) which are in p;(Im MZ7"), con-
tradicting the definition of (. Since

dimy p; ((f1,- - -, fn)s—n) — dimg p;(Im P5_,) = dimy p;(Coker E;_,)) = k,

therefore (- - m; o m9)(V) has dimension at most k . Using the injectivity of m
7 g J
X

and 7y this Timplies that V' has dimension at most k. This concludes the proof of
Lemma 3.3.11. m

Claim 2 follows from the following lemma by taking V5 := p;(Coker ¢§”’””) defined
below:

Lemma 3.3.12 Using the notations and assumptions introduced in the proof of
Theorem 3.3.10, the map

¢ @ Mon(v — d;, ) — Mon(v, 77')
=1

(91,5 9n) = Z figi  mod Q?Z/
=1

satisfies
dimyc pi(Coker ¢1"") > |Cu| — 1. (51)

Proof of Lemma 3.3.12: First note that since 0 <d—v <n<d—n<v <4,
we have that #Rep,(v,n') > #Mon(v,n’) which implies that ") is generically
surjective.

Recall that C C Repy(n, ') was chosen to be a basis for p;(Coker ®; /). Consider-
ing the dual of the map ®; , we get that C corresponds to a basis of p;(ker ®, ).
Taking into account the definition of [ in (46) we get that the first cohomology of
the Koszul complex K*((fi,..., fu,27),n) of the n + 1 polynomials fi,..., f,,z7
satisfies

dimg p; HY(K*((f1, -+, fara)ym)) = |Ci| — 1. (52)
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We can rewrite the claimed inequality (51) as well:

dimy p; HO(K*((f1, -, fo,2?),0)) > |C1| — L. (53)
Since p° € R defines a hypersurface in the coefficient space of fi,..., fn, we
can assume without loss of generality (maybe after permutation of indeces) that
fi, ..., fn_1 are generic polynomials. Define the system of polynomials

f, = (f17 <. 'afn—17$z/)

with degrees d' = (dy, . ..,d,—1,7"). By the genericity of fi,..., f,—1 we can assume
that for any ¢t > 0 the cohomologies of the Koszul complex of f’ satisfies

pi H/(K*(f',t)) =0 Vj>1
Next we consider the mapping cone of the map of complexes
bp, KOt —dy) — K°(f,1)
defined by the multiplication by f,,. We have the following diagram:
o N2S(t—d)" — A'S'(t—dp)" — (Mon(t —d")) — 0
® N @ N ® N
ANS'@H)" — A2S(t—d)" —  A'S(H)"  — (Mon(t))

where
n—1

AS'@)" = PMon(t - d;)) & (Mon(t — 1))

=1

and for j > 1 A7 S'(t)" is defined similarly. It is easy to see that the mapping cone
of ¢y, is the Koszul complex K*((f, 27 ),t) of the n-+1 polynomials (f1,. .., fn, 27 ).
Thus we have the following long exact sequence of k-spaces:

0 — pi H'(K*((f,0),1)) — pi HO(K*(f,t = d)) 2 pHO(KC (', 1)) —
— pi HOK®((f,a)), 1)) = 0.

By the assumption on the genericity of fi,... f,_1 we have that

p; HO(K*(f',t)) = pi(Ha (1))
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where Hy (t) = {2z | |a| =t,a; < d; Vj < n,a, < n'} of cardinality Hq (¢). Define
n—1
= di+n=06—d,+n =v—d,+n.
j=1
using that 7’ =n — 6 + v. Then Hy(t) = Ha (0" — t), therefore
Hd/(l/) = Hd’(n — dn) and Hd/(l/ — dn) = Hd/ (77),

which implies that

p; HO(K*(f',n—d,))=p; H(K*(f',v)) and
pi HO(K*(f',v — dn)) =p; HY(K*(f', ).

Moreover, it is easy to see that the map
P HO(K(f',n — dn)) — pi H'(K*(f',n))
induced by the multiplication by f, is equal to the dual of the map
pi HY(K*(f', v = dn)) — pi H(K*(f',v))

also induced by the multiplication by f,, i.e. we can find bases such that the ma-
trices of the two maps are transposes of each other. This implies that the complex

0 — pi H'(K*((f,a}),m) = pi HUK*(f',n = dn)) — p H(K*(f,m)) —
— pi HO(K*((f,2}));m)) = 0.
is the same as the complex

0 — p; HOK((f,2)),v))" = ps HOK*(f',v))" — piH(K*(f',v = dn))* —
— pi H'(K*((f,2})),v))" = 0.

By our assumption (52) we have that
dimye p; H'(K*((f,27),m) = |Ci] = 1,

therefore
dimy p; H'(K*((f.27),v)) = |C1] =
as we claimed in (53). This concludes the proof of Lemma 3.3.12. B
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